Download Free Methods And Applications Of Statistics In The Social And Behavioral Sciences Book in PDF and EPUB Free Download. You can read online Methods And Applications Of Statistics In The Social And Behavioral Sciences and write the review.

Explore classic and cutting-edge statistical tools used in conducting diverse research in the behavioral and social sciences Inspired by the multifaceted Encyclopedia of Statistical Sciences, Second Edition, this book provides a concise, self-contained reference for readers wishing to gain quick access to cutting-edge information about the application of statistical methods and techniques in the social and behavioral sciences. Featuring contributions from over 100 leading experts in academia and industry, this work combines key articles from the Encyclopedia with new and thoroughly updated content that addresses the latest research methods for gathering, reporting, and analyzing data across diverse subject areas, including economics, psychology, demography, political science, and communications. The book features new and updated content on quantitative methods and their use in understanding the latest topics in social and behavioral research, including: Childhood Obesity Agriculture Production Current Population Surveys Econometrics Affluence, Poverty, and Quality of Life Each contribution offers authoritative, yet easily accessible, coverage of statistical concepts. With updated references and discussion of relevant research topics, readers are provided with the various statistical methods, techniques, strategies, and applications that are essential in tackling critical issues pertaining to the social and behavioral sciences. Providing a blend of traditional methodology and the latest research, Methods and Applications of Statistics in the Social and Behavioral Sciences is an excellent resource for researchers, professionals, and students in the fields of sociology, psychology, philosophy, education, political science, and related disciplines who would like to learn about the uses of statistics in gathering, reporting, and analyzing data.
In addition to learning how to apply classic statistical methods, students need to understand when these methods perform well, and when and why they can be highly unsatisfactory. Modern Statistics for the Social and Behavioral Sciences illustrates how to use R to apply both standard and modern methods to correct known problems with classic techniques. Numerous illustrations provide a conceptual basis for understanding why practical problems with classic methods were missed for so many years, and why modern techniques have practical value. Designed for a two-semester, introductory course for graduate students in the social sciences, this text introduces three major advances in the field: Early studies seemed to suggest that normality can be assumed with relatively small sample sizes due to the central limit theorem. However, crucial issues were missed. Vastly improved methods are now available for dealing with non-normality. The impact of outliers and heavy-tailed distributions on power and our ability to obtain an accurate assessment of how groups differ and variables are related is a practical concern when using standard techniques, regardless of how large the sample size might be. Methods for dealing with this insight are described. The deleterious effects of heteroscedasticity on conventional ANOVA and regression methods are much more serious than once thought. Effective techniques for dealing heteroscedasticity are described and illustrated. Requiring no prior training in statistics, Modern Statistics for the Social and Behavioral Sciences provides a graduate-level introduction to basic, routinely used statistical techniques relevant to the social and behavioral sciences. It describes and illustrates methods developed during the last half century that deal with known problems associated with classic techniques. Espousing the view that no single method is always best, it imparts a general understanding of the relative merits of various techniques so that the choice of method can be made in an informed manner.
Statistics for Lawyers presents the science of statistics in action at the cutting edge of legal problems. A series of more than 90 case studies, drawn principally from actual litigation, have been selected to illustrate important areas of the law in which statistics has played a role and to demonstrate a variety of statistical tools. Some case studies raise legal issues that are being intensely debated and lie at the edge of the law. Of particular note are problems involving toxic torts, employment discrimination, stock market manipulation, paternity, tax legislation, and drug testing. The case studies are presented in the form of legal/statistical puzzles to challenge the reader and focus discussion on the legal implications of statistical findings. The techniques range from simple averaging for the estimation of thefts from parking meters to complex logistic regression models for the demonstration of discrimination in the death penalty. Excerpts of data allow the reader to compute statistical results and an appendix contains the authors' calculations.
Designed to make wildflower identification as easy as possible for the walker or rambler, this guide covers over 250 species with colour photographs of each. The flowers are categorized in eight sections: seashore and coastal; fresh water; heaths and moors; marshes, fens and bogs; cultivated, arable and waste land; grassland and meadows; gardens, paths and walls; and woodland and hedgerows. Each habitat section has a set of introductory photographs for easy identification and larger photographs alongside essential information which includes the botanical name, month of flowering and particular characteristics of the species.
This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.
Summarizing the material ordinarily covered in an introductory statistics course, this handbook introduces basic concepts and statistical methods. It also offers practical advice concerning the selection of procedures, demonstrates the means of evaluating and interpreting data, provides numerous formulas, and supplies a variety of worked examples. The authors teach psychology at New York University and Macalester College. Annotation ♭2004 Book News, Inc., Portland, OR (booknews.com).
In this fully updated edition of Using Basic Statistics in the Behavioral and Social Sciences, Annabel Ness Evans presents introductory statistics in a practical, conceptual, and humorous way, reducing the anxiety that many students experience in introductory courses. Avoiding complex notation and derivations, the book focuses on helping readers develop an understanding of the underlying logic of statistics, rather than rote memorization. Focus on Research boxes engage students with realistic applications of statistics, and end-of-chapter exercises ensure student comprehension. This exciting new edition includes a greater number of realistic and engaging global examples within the social and behavioral sciences, making it ideal for use within many departments or in interdisciplinary settings.
Using and Interpreting Statistics in the Social, Behavioral, and Health Sciences is designed to be paired with any undergraduate introduction to research methods text used by students in a variety of disciplines. It introduces students to statistics at the conceptual level—examining the meaning of statistics, and why researchers use a particular statistical technique, rather than computational skills. Focusing on descriptive statistics, and some more advanced topics such as tests of significance, measures of association, and regression analysis, this brief, inexpensive text is the perfect companion to help students who have not yet taken an introductory statistics course or are confused by the statistics used in the articles they are reading.
Written by an interdisciplinary team of global experts, this book is an invaluable tool for anyone learning about research methods.