Download Free Methane Derived Alcohols Book in PDF and EPUB Free Download. You can read online Methane Derived Alcohols and write the review.

As we are moving ahead into the 21st century, our hunger for cost effective and environmentally friendly energy continues to grow. The Energy Information Administration of US has forecasted that only in the first two decades of the 21st century, our energy demand will increase by 60% compared to the levels at the end of the 20th century. Fossil fuels have been traditionally the major primary energy sources worldwide, and their role is expected to continue growing for the forecasted period, due to their inherent cost competitiveness compared to non-fossil fuel energy sources. However, the current fossil energy scenario is undergoing significant transformations, especially to accommodate increasingly stringent environmental challenges of contaminants like sulfur dioxide, nitrogen oxides or mercury, while still providing affordable energy. Furthermore, traditional fossil fuel utilization is inherently plagued with greenhouse gas emissions from combustion, especially carbon dioxide from stationary sources as well as from mobile sources. Should worldwide government policies dictate a reduction of greenhouse gas emissions, such as proposed by the Kyoto Protocol and the implementation of carbon taxes, fossil fuels would lose their significant competitive appeal in favor of nuclear energy and renewable energy sources. However, the current non-fossil fuel energy share of the worldwide energy market is merely below 15%, and therefore, it is more likely that fossil fuel energy producers would adapt to the new requirements by developing and implementing emission control technologies, and emission trades among other strategies.
This comprehensive reference is a state-of-the-art survey of biomass as an energy carrier for the provision of heat, electricity, and transportation fuel, considering technical, economic, environmental, and social aspects. On a global scale, biomass contributes roughly 12 to 16 % of the energy needed to cover the overall primary energy consumption. Thus far, it is humanity’s most important source of renewable energy, used on practically all continents and growing in importance even in industrialized nations. With detailed coverage of the production of solid, gaseous and liquid fuels, as well as a final energy provision, this volume serves as an introduction for readers just entering the field, but also offers new insights, up-to-date information, as well as latest findings for advanced researchers, industry experts, and decision makers.
There is increasing recognition that low-cost, high capacity processes for the conversion of biomass into fuels and chemicals are essential for expanding the utilization of carbon neutral processes, reducing dependency on fossil fuel resources, and increasing rural income. While much attention has focused on the use of biomass to produce ethanol via fermentation, high capacity processes are also required for the production of hydrocarbon fuels and chemicals from lignocellulosic biomass. In this context, this book provides an up-to-date overview of the thermochemical methods available for biomass conversion to liquid fuels and chemicals. In addition to traditional conversion technologies such as fast pyrolysis, new developments are considered, including catalytic routes for the production of liquid fuels from carbohydrates and the use of ionic liquids for lignocellulose utilization. The individual chapters, written by experts in the field, provide an introduction to each topic, as well as describing recent research developments.
In the quest to mitigate the buildup of greenhouse gases in Earth's atmosphere, researchers and policymakers have increasingly turned their attention to techniques for capturing greenhouse gases such as carbon dioxide and methane, either from the locations where they are emitted or directly from the atmosphere. Once captured, these gases can be stored or put to use. While both carbon storage and carbon utilization have costs, utilization offers the opportunity to recover some of the cost and even generate economic value. While current carbon utilization projects operate at a relatively small scale, some estimates suggest the market for waste carbon-derived products could grow to hundreds of billions of dollars within a few decades, utilizing several thousand teragrams of waste carbon gases per year. Gaseous Carbon Waste Streams Utilization: Status and Research Needs assesses research and development needs relevant to understanding and improving the commercial viability of waste carbon utilization technologies and defines a research agenda to address key challenges. The report is intended to help inform decision making surrounding the development and deployment of waste carbon utilization technologies under a variety of circumstances, whether motivated by a goal to improve processes for making carbon-based products, to generate revenue, or to achieve environmental goals.
Anaerobic Reactors is the forth volume in the series Biological Wastewater Treatment. The fundamentals of anaerobic treatment are presented in detail, including its applicability, microbiology, biochemistry and main reactor configurations. Two reactor types are analysed in more detail, namely anaerobic filters and especially UASB (upflow anaerobic sludge blanket) reactors. Particular attention is also devoted to the post-treatment of the effluents from the anaerobic reactors. The book presents in a clear and informative way the main concepts, working principles, expected removal efficiencies, design criteria, design examples, construction aspects and operational guidelines for anaerobic reactors. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 1: Waste Stabilisation Ponds; Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilization Ponds; Volume 5: Activated Sludge and Aerobic Biofilm Reactors; Volume 6: Sludge Treatment and Disposal
This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Sumposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings.The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volum. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings.