Download Free Metastable Microstructures Book in PDF and EPUB Free Download. You can read online Metastable Microstructures and write the review.

The second edition of this textbook, popular amongst students and faculty alike, investigates the various causes of thermodynamic instability in metallic microstructures. Materials theoretically well designed for a particular application may prove inefficient or even useless unless stable under normal working conditions. The authors examine current experimental and theoretical understanding of the kinetics behind structural change in metals. The entire text has been updated in this new edition, and a completely new chapter on highly metastable alloys has been added. The degree to which kinetic stability of the material outweighs its thermodynamic instability is very important, and dictates the useful working life of the material. If the structure is initially produced to an optimum, such changes will degrade the properties of the material. This comprehensive and well-illustrated text, accompanied by ample references, will allow final year undergraduates, graduate students and research workers to investigate in detail the stability of microstructure in metallic systems.
The First Workshop on Metastable and Nanostructured Materials was held in the city of São Pedro (Brazil) in August 2001. These proceedings contain 22 revised papers which concentrate mainly on the topics of bulk metallic glasses and nanocrystalline materials prepared via the chemical synthesis, devitrification of mechanical alloying and compaction routes. However, other important contributions here deal with the spray deposition process and polymeric materials, as well as with the resultant magnetic, mechanical, electromagnetic, electrochemical, catalytic and optical properties of the product materials.
The rapid technological developments during the later half of the 20th century have demanded materials that are stronger, capable of use at much higher temperatures, more corrosion-resistant, and much less expensive than those currently used. These demands become even more significant on the threshold of the new century and the millennium. Significant improvements in properties can only be achieved by processing the materials under far-from-equilibrium (or non-equilibrium) conditions. Several new processing technologies have been developed during the past few decades including, rapid solidification, spray forming, mechanical alloying, ion mixing, vapor deposition, laser processing and plasma processing. Remarkable advances have been made in recent years in the science and technology of these processes used to synthesize, characterize, and apply these materials processed under non-equilibrium conditions. Some of these techniques have evolved from laboratory curiosity to commercial-scale manufacturing in just a few years. In other cases, industrial necessity prompted development of the technology, and the science followed later. The chapters in this book have been written by people who are world-recognized experts in their respective fields. Each chapter describes the principles, processing techniques, special features of the materials produced, and their applications. An extensive list of references is provided at the end of each chapter that will facilitate location of additional information on specific aspects of any technique.
Examines the advances made in the field in recent years and looks at the various methods now used; ideal for graduate students and researchers.
A richly illustrated survey of rock microstructures in igneous, metamorphic and sedimentary rocks, from basic concepts to cutting-edge research.
Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. - Discusses the science behind the properties and performance of advanced metallic materials - Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures - Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work
The results obtained from kinetic studies on reactions in solids often depend on numerous factors. Therefore, it is important for researchers to understand how both chemical factors related to composition and procedural choices may influence outcomes. Dynamic Processes in Solids provides an authoritative overview of reactions in solids and helps readers interpret the results obtained from kinetic studies. In chapters written by active researchers, the reader will learn about choosing appropriate experimental techniques and their limitations for studying various types of reactions. Beginning with an introduction to numerous aspects of rate processes in solids and experimental techniques, information is provided on rate laws, factors affecting rates, diffusion, and sintering. Subsequent chapters deal with electrical conductivity in dispersed phase polymers, thermochemical reactions for producing solid materials, reactions in coordination compounds, dynamic observations on plastic deformation, light driven phenomena in quantum materials, decomposition of perovskite photovoltaic compounds, and reaction of oxygen radicals with surfaces. This book is a practical introduction to the field for chemists and researchers whose work is directly related to dynamic changes in solids, and additionally for those in related fields whose work would be enhanced by an understanding of these types of rate processes. - Presents useful discussions of the applications of several experimental techniques - Describes approaches for synthesis of solid materials by thermochemical reactions - Presents theoretical interpretation structural dynamics and processes at the molecular level in solids - Provides information on the relationships between performance and rate processes in several types of materials related to electronic behavior