Download Free Metallic Nanoparticles For Health And The Environment Book in PDF and EPUB Free Download. You can read online Metallic Nanoparticles For Health And The Environment and write the review.

"Metallic Nanoparticles for Health and the Environment covers different routes of synthesis for metallic nanoparticles and their process variables. Both functions and roles of these particles as a drug delivery system, diagnostic agent, and other potential theranostics purposes against metabolic disorders, photo-catalysis applications, as well as wastewater treatments are discussed. It compares different properties among bulk form metallic to their nanoparticulated forms. It discusses mechanisms and impacts of different process variables in different synthesis routes as well as emerging trends in clinics and so forth. Features: Covers different routes of synthesis to create metallic nanoparticles (MNPs) of different characteristics with reference to bulk forms of metals. Describes formulation parameters that have significant effect in these MNPs including dimensions, morphology, mechanism, surface properties and other characteristics. Discusses different roles and performances of MNPs in photo-thermal therapy, metabolic disorders, mechanism in bacterial, fungal, and viral infections and inflammatory pathways. Reviews potential and emerging roles of different MNPs with site target delivery applications and genetic manipulation purposes. Examines advantages and challenges of these MNPs against remediation of pollutants and toxicants, owing to superior surface catalytic activities. This book is aimed at researchers and professionals in nanomaterials, pharmaceuticals, and drug delivery"--
Metallic Nanoparticles for Health and the Environment covers different routes of synthesis for metallic nanoparticles and their process variables. Both the functions and roles of these particles as a drug delivery system and diagnostic agent and other potential theranostic purposes against metabolic disorders, photocatalysis applications, as well as wastewater treatments, are discussed. The book compares the different properties of bulk metallic forms and their nanoparticulated forms. It discusses the mechanisms and impacts of different process variables in different synthesis routes, as well as emerging trends in clinics and so forth. Features: Covers different routes of synthesis to create metallic nanoparticles (MNPs) of different characteristics with reference to bulk forms of metals Describes formulation parameters that have a significant effect on these MNPs including dimensions, morphology, mechanism, surface properties, and other characteristics Discusses different roles and performances of MNPs in photothermal therapy, metabolic disorders, mechanisms in bacterial, fungal, and viral infections, and inflammatory pathways Reviews the potential and emerging roles of different MNPs with site target delivery applications and genetic manipulation purposes Examines the advantages and challenges of these MNPs against remediation of pollutants and toxicants, owing to their superior surface catalytic activities This book is aimed at researchers and professionals in nanomaterials, pharmaceuticals, and drug delivery.
This book is divided into four main sections thoroughly analyzing the use of nanomaterials for water, air and soil solutions, and emphasizing environmental risks. Providing background on nanomaterials' two-decade study, it discusses the characterization and application of unconventional disinfectants, called antimicrobial nanomaterials, which fall into three categories and, while seemingly harmless, have potential hazards if applied improperly. Special attention is given to the process of remediation, synthetics techniques, and properties of nanomaterials, with examples to which new and trained readers in the field can relate and understand. an interdisciplinary approach, aimed at scientists in physical chemistry, nanotechnology, and environmental sciences includes applications of non-conventional techniques in environmental protection furthers the development of applied nanoscience and nanotechnology suggests new industrial projects and university courses addressing nanotechnology in and for the environment includes applications for water, air and soil protection
Metallic Nanoparticles for Health and the Environment covers different routes of synthesis for metallic nanoparticles and their process variables. Both the functions and roles of these particles as a drug delivery system and diagnostic agent and other potential theranostic purposes against metabolic disorders, photocatalysis applications, as well as wastewater treatments, are discussed. The book compares the different properties of bulk metallic forms and their nanoparticulated forms. It discusses the mechanisms and impacts of different process variables in different synthesis routes, as well as emerging trends in clinics and so forth. Features: Covers different routes of synthesis to create metallic nanoparticles (MNPs) of different characteristics with reference to bulk forms of metals. Describes formulation parameters that have a significant effect on these MNPs including dimensions, morphology, mechanism, surface properties, and other characteristics. Discusses different roles and performances of MNPs in photothermal therapy, metabolic disorders, mechanisms in bacterial, fungal, and viral infections, and inflammatory pathways. Reviews the potential and emerging roles of different MNPs with site target delivery applications and genetic manipulation purposes. Examines the advantages and challenges of these MNPs against remediation of pollutants and toxicants, owing to their superior surface catalytic activities. This book is aimed at researchers and professionals in nanomaterials, pharmaceuticals, and drug delivery.
Health and Environmental Safety of Nanomaterials addresses concerns about the impact of nanomaterials on the environment and human health, and examines the safety of specific nanomaterials. Understanding the unique chemical and physical properties of nanostructures has led to many developments in the applications of nanocomposite materials. While these materials have applications in a huge range of areas, their potential for toxicity must be thoroughly understood. Part one introduces the properties of nanomaterials, nanofillers, and nanocomposites, and questions whether they are more toxic than their bulk counterparts. Part two looks at the release and exposure of nanomaterials. The text covers sampling techniques and data analysis methods used to assess nanoparticle exposure, as well as protocols for testing the safety of polymer nanocomposites. It explains characterization techniques of airborne nanoparticles and life cycle assessment of engineered nanomaterials. Part three focuses on the safety of certain nanomaterials, including nanolayered silicates, carbon nanotubes, and metal oxides. In particular, it explores the potential ecotoxicological hazards associated with the different structures of carbon nanotubes and the safe recycling of inorganic and carbon nanoparticles. The final two chapters address the risks of nanomaterials in fire conditions: their thermal degradation, flammability, and toxicity in different fire scenarios. This is a scientific guide with technical background for professionals using nanomaterials in industry, scientists, academicians, research scholars, and polymer engineers. It also offers a deep understanding of the subject for undergraduate and postgraduate students. - Introduces the properties of nanomaterials, nanofillers, and nanocomposites, and questions whether they are more toxic than their bulk counterparts - Covers sampling techniques and data analysis methods used to assess nanoparticle exposure, as well as protocols for testing the safety of polymer nanocomposites - Explores the potential ecotoxicological hazards associated with the different structures of carbon nanotubes and the safe recycling of inorganic and carbon nanoparticles
A state-of-the-art reference, Metal Nanoparticles offers the latest research on the synthesis, characterization, and applications of nanoparticles. Following an introduction of structural, optical, electronic, and electrochemical properties of nanoparticles, the book elaborates on nanoclusters, hyper-Raleigh scattering, nanoarrays, and several applications including single electron devices, chemical sensors, biomolecule sensors, and DNA detection. The text emphasizes how size, shape, and surface chemistry affect particle performance throughout. Topics include synthesis and formation of nanoclusters, nanosphere lithography, modeling of nanoparticle optical properties, and biomolecule sensors.
Nanomaterials can be synthesized by physical, chemical, and biological methods; however, the latter technique is preferred as it is eco-friendly, non-toxic, and cost-effective. The green synthesized nanomaterials have been found to be more efficient with potential applications in diverse fields. It is crucial to explore green synthesized nanomaterials and the applications that can be made in order to support water remediation, pharmaceuticals, food processing, construction, and more. The Handbook of Research on Green Synthesis and Applications of Nanomaterials provides a multidisciplinary approach to the awareness of using non-toxic, eco-friendly, and economical green techniques for the synthesis of various nanomaterials, as well as their applications across a variety of fields. Covering topics such as antimicrobial applications, environmental remediation, and green synthesis, this book acts as a thorough reference for engineers, nanotechnology professionals, academicians, students, scientists, and researchers pursuing research in the nanotechnology field.
Details the source, release, exposure, adsorption, aggregation, bioavailability, transport, transformation, and modeling of engineered nanoparticles found in many common products and applications Covers synthesis, environmental application, detection, and characterization of engineered nanoparticles Details the toxicity and risk assessment of engineered nanoparticles Includes topics on the transport, transformation, and modeling of engineered nanoparticles Presents the latest developments and knowledge of engineered nanoparticles Written by world leading experts from prestigious universities and companies
This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.
This groundbreaking book uniquely focuses on the exploration of the green synthesis of metal nanoparticles and their characterization and applications. Metal nanoparticles are the basic elements of nanotechnology as they are the primary source used in the design of nanostructured devices and materials. Nanomaterials can be manufactured either incidentally, with physical or chemical methods, or naturally; and the high demand for them has led to their large-scale production by various toxic solvents or high energy techniques. However, due to the growing awareness of environmental and safety issues, the use of clean, nontoxic and environment-friendly ways to synthesize metal nanoparticles has emerged out of necessity. The use of biological resources, such as microbes, plant parts, vegetable wastes, agricultural wastes, gums, etc., has grown to become an alternative way of synthesizing metal nanoparticles. This biogenic synthesis is green, environmentally friendly, cost-effective, and nontoxic. The current multi-authored book includes recent information and builds a database of bioreducing agents for various metal nanoparticles using different precursor systems. Green Metal Nanoparticles also highlights different simple, cost-effective, environment-friendly and easily scalable strategies, and includes parameters for controlling the size and shape of the materials developed from the various greener methods.