Download Free Metallic Nanomaterials Book in PDF and EPUB Free Download. You can read online Metallic Nanomaterials and write the review.

This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.
This is the first volume (Part A) in the series of books covering practical aspects of synthesis and characterization of various categories of nanomaterials taking into consideration the most up to date research publications. The aim of the book series is to provide students and researchers practical information such as synthetic procedures, characterization protocols and mechanistic insights to enable them to either reproduce well established methods or plan for new syntheses of size and shape controlled nanomaterials based on both batch and continuous flow reactions. The first Volume (Part A) focuses on metallic nanomaterials.
​This book covers the continually expanding field of metal nanoparticles and clusters, in particular their size-dependent properties and quantum phenomena. The approaches to the organization of atoms that form clusters and nanoparticles have been advancing rapidly in recent times. These advancements are described through a combination of experimental and computational approaches and are covered in detail by the authors. Recent highlights of the various emerging properties and applications ranging from plasmonics to catalysis are showcased.
Metallic nanoparticles display fascinating properties that are quite different from those of individual atoms, surfaces or bulk rmaterials. They are a focus of interest for fundamental science and, because of their huge potential in nanotechnology, they are the subject of intense research effort in a range of disciplines. Applications, or potential applications, are diverse and interdisciplinary. They include, for example, use in biochemistry, in catalysis and as chemical and biological sensors, as systems for nanoelectronics and nanostructured magnetism (e.g. data storage devices), where the drive for further miniaturization provides tremendous technological challenges and, in medicine, there is interest in their potential as agents for drug delivery.The book describes the structure of metallic nanoparticles, the experimental and theoretical techniques by which this is determined, and the models employed to facilitate understanding. The various methods for the production of nanoparticles are outlined. It surveys the properties of clusters and the methods of characterisation, such as photoionization, optical spectroscopy, chemical reactivity and magnetic behaviour, and discusses element-specific information that can be extracted by synchrotron-based techniques such as EXAFS, XMCD and XMLD. The properties of clusters can vary depending on whether they are free, deposited on a surface or embedded in a matrix of another material; these issues are explored. Clusters on a surface can be formed by the diffusion and aggregation of atoms; ways of modelling these processes are described. Finally we look at nanotechnology and examine the science behind the potential of metallic nanoparticles in chemical synthesis, catalysis, the magnetic separation of biomolecules, the detection of DNA, the controlled release of molecules and their relevance to data storage.The book addresses a wide audience. There was a huge development of the subject beginning in the mid-1980s where researchers began to study the properties of free nanoparticle and models were developed to describe the observations. The newcomer is introduced to the established models and techniques of the field without the need to refer to other sources to make the material accessible. It then takes the reader through to the latest research and provides a comprehensive list of references for those who wish to pursue particular aspects in more detail. It will also be an invaluable handbook for the expert in a particular aspect of nanoscale research who wishes to acquire knowledge of other areas.The authors are specialists in different aspects of the subject with expertise in physics and chemistry, experimental techniques and computational modelling, and in interdisciplinary research. They have collaborated in research. They have also collaborated in writing this book, with the aim from the outset of making it is a coherent whole rather than a series of independent loosely connected articles.* Appeals to a wide audience* Provides an introduction to established models and techniques in the field* Comprehensive list of references
The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 3 - Mixed Metal Nanomaterials This volume covers the aspects of synthesis, characterization and application of bimetallic and multielemental spherical and anisotropic nanomaterials in the life sciences.
This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.
This groundbreaking book uniquely focuses on the exploration of the green synthesis of metal nanoparticles and their characterization and applications. Metal nanoparticles are the basic elements of nanotechnology as they are the primary source used in the design of nanostructured devices and materials. Nanomaterials can be manufactured either incidentally, with physical or chemical methods, or naturally; and the high demand for them has led to their large-scale production by various toxic solvents or high energy techniques. However, due to the growing awareness of environmental and safety issues, the use of clean, nontoxic and environment-friendly ways to synthesize metal nanoparticles has emerged out of necessity. The use of biological resources, such as microbes, plant parts, vegetable wastes, agricultural wastes, gums, etc., has grown to become an alternative way of synthesizing metal nanoparticles. This biogenic synthesis is green, environmentally friendly, cost-effective, and nontoxic. The current multi-authored book includes recent information and builds a database of bioreducing agents for various metal nanoparticles using different precursor systems. Green Metal Nanoparticles also highlights different simple, cost-effective, environment-friendly and easily scalable strategies, and includes parameters for controlling the size and shape of the materials developed from the various greener methods.
This important book focuses on the synthesis and fabrication of nanostructures and nanomaterials, but also includes properties and applications of nanostructures and nanomaterials, particularly inorganic nanomaterials. It provides balanced and comprehensive coverage of the fundamentals and processing techniques with regard to synthesis, characterization, properties, and applications of nanostructures and nanomaterials. Both chemical processing and lithographic techniques are presented in a systematic and coherent manner for the synthesis and fabrication of 0-D, 1-D, and 2-D nanostructures, as well as special nanomaterials such as carbon nanotubes and ordered mesoporous oxides. The book will serve as a general introduction to nanomaterials and nanotechnology for teaching and self-study purposes.
Biochemical Toxicology - Heavy Metals and Nanomaterials provides an overview of biochemical contamination, nanomaterials and toxic metals, and measurement techniques. It explains and clarifies important studies and compares and develops new and groundbreaking measurement techniques in the fields of organic and inorganic pollution and nanoscience. It is highly recommended for professionals and readers interested in the environment and human health.
Metal Nanoparticles for Drug Delivery and Diagnostic Applications addresses the lifecycle of metal nanoparticles, from synthesis and characterization, to applications in drug delivery and targeting. It is an important resource for those in biomaterials, nanomedicine and pharmaceutical sciences, exploring gold, silver and iron-based drug delivery systems for controlled and targeted delivery of potential drugs and genes for enhanced clinical efficacy. Nanotechnology is widely used in drug delivery due to its ability to reduce plasma fluctuation of drugs, high solubility, and efficiency, the relatively low cost of nanoscale products, and enhancement of patient comfort, hence this resource is a welcome edition to the science.