Download Free Metallic Alloys Book in PDF and EPUB Free Download. You can read online Metallic Alloys and write the review.

Modern metallurgy is a fascinating field of research, full of discoveries, commercial opportunities and industrial utility. Encyclopedia of Materials: Metals and Alloys is a new, multidisciplinary reference work offering a comprehensive coverage of this exciting area, and consolidating research activities in all experimental and theoretical aspects of metallic materials, intermetallic compounds, alloys, blends and composites. Key focus is on those aspects of the science of metals concerned with their manufacturing, processing and fabrication, the relationship between the macro/micro/nanostructures and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical), industrial application, surface modification and functionalization of metals – and, importantly, resource and supply chain issues, and life-cycle and sustainability practices. This title provides users with a single and unique reference source, incorporating elements from many different disciplines. An invaluable addition to any reference library of engineers, chemists and physicists, both from industry and academia. Comprehensive and accessible - offers users a ‘one stop’ comprehensive resource, providing contemporary reviews of current metallurgy research, and an insight into the future direction of the field Clearly structured - meticulously organized, chapters are split into 13 sections on key topics and clearly cross-referenced to allow students, researchers, and professionals to find relevant information quickly and easily Multidisciplinary - chapters written by academics and practitioners from various fields and regions ensure that the knowledge within is easily understood by, and applicable to, a large audience Contemporary content - emphasis is given to clean energy, green transport, healthcare and next-generation manufacturing
This book is intended to serve as core text or handy reference on two key areas of metallic materials: (i) mechanical behavior and properties evaluated by mechanical testing; and (ii) different types of metal working or forming operations to produce useful shapes. The book consists of 16 chapters which are divided into two parts. The first part contains nine chapters which describe tension (including elastic stress – strain relation, relevant theory of plasticity, and strengthening methods), compression, hardness, bending, torsion – pure shear, impact loading, creep and stress rupture, fatigue, and fracture. The second part is composed of seven chapters and covers fundamentals of mechanical working, forging, rolling, extrusion, drawing of flat strip, round bar, and tube, deep drawing, and high-energy rate forming. The book comprises an exhaustive description of mechanical properties evaluated by testing of metals and metal working in sufficient depth and with reasonably wide coverage. The book is written in an easy-to-understand manner and includes many solved problems. More than 150 numerical problems and many multiple choice questions as exercise along with their answers have also been provided. The mathematical analyses are well elaborated without skipping any intermediate steps. Slab method of analysis or free-body equilibrium approach is used for the analytical treatment of mechanical working processes. For hot working processes, different frictional conditions (sliding, sticking and mixed sticking–sliding) have been considered to estimate the deformation loads. In addition to the slab method of analysis, this book also contains slip-line field theory, its application to the static system, and the steady state motion, Further, this book includes upper-bound theorem, and upper-bound solutions for indentation, compression, extrusion and strip drawing. The book can be used to teach graduate and undergraduate courses offered to students of mechanical, aerospace, production, manufacturing and metallurgical engineering disciplines. The book can also be used for metallurgists and practicing engineers in industry and development courses in the metallurgy and metallic manufacturing industries.
Half-metals are particular ferromagnetic materials which can be considered as hybrids between metals and semiconductors. A particular feature of these materials is that electrons at the Fermi level show complete spin polarization making them prime targets for research into suitable divices for spin electronics. This book is both an introduction and state-of-art survey of the latest advances in the understanding and applications of Heusler alloys and related compounds.
Index of amorphous alloys
Metals and Alloys continues the series of graduate textbooks on Industrial Chemistry by Mark A. Benvenuto. It shows the essential industrial applications, processes and chemistry background for the extraction of metals, as well as the production and applications of alloys. The book discusses how large scale and minor processes affect every-day life, challenges in prevention and removal of waste by-products and illustrates selected chemical processes for which efforts have been made to improve and “green” industrial production of metals and alloys. Sources for metals are sorted by metal and alloy and backed by basic chemical background information and process set up. Overviews on worldwide ore distribution, refined metal and alloy production numbers are another focus of the book. Discusses sources, key processes and applications. Connects what students learn in class to real, large-scale metals chemistry that makes modern life possible. Intended for students, graduate students and beginners in the fiield of Chemistry, Chemical Process Engineering, Chemical Engineering and Materials Science. Visit degruyter.com for more information on books by Mark A. Benvenuto: Industrial Chemistry (2013), Industrial Chemistry: For Advanced Students (2015) and Industrial Inorganic Chemistry (2015). About the Author: Mark Anthony Benvenuto A Fellow of the American Chemical Society, he received his PhD in inorganic chemistry from the University of Virginia. After a post-doctoral fellowship at the Pennsylvania State University, he joined the University of Detroit Mercy, where he is now the Department Chairman and teaches an industrial chemistry course.
Tensile strength, fatigue strength and ductility are important properties of nanostructured metallic materials, which make them suitable for use in applications where strength or strength-to-weight ratios are important. Nanostructured metals and alloys reviews the latest technologies used for production of these materials, as well as recent advances in research into their structure and mechanical properties.One of the most important issues facing nanostructured metals and alloys is how to produce them. Part one describes the different methods used to process bulk nanostructured metals and alloys, including chapters on severe plastic deformation, mechanical alloying and electrodeposition among others. Part two concentrates on the microstructure and properties of nanostructured metals, with chapters studying deformation structures such as twins, microstructure of ferrous alloys by equal channel angular processing, and characteristic structures of nanostructured metals prepared by plastic deformation. In part three, the mechanical properties of nanostructured metals and alloys are discussed, with chapters on such topics as strengthening mechanisms, nanostructured metals based on molecular dynamics computer simulations, and surface deformation. Part four focuses on existing and developing applications of nanostructured metals and alloys, covering topics such as nanostructured steel for automotives, steel sheet and nanostructured coatings by spraying.With its distinguished editor and international team of contributors, Nanostructured metals and alloys is a standard reference for manufacturers of metal components, as well as those with an academic research interest in metals and materials with enhanced properties.
* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion
Amorphous Metallic Alloys covers the preparation and properties of alloys produced by rapid quenching from the molten state. This book focuses on three technologically important classes of magnetic amorphous alloy—transition metal-metalloid (TM-M) alloys, rare earth-transition metal (RE-TM) alloys, and transition metal-zirconium or hafnium alloys (TM-Zr-Hf). The melt-quenched transition metal-metalloid and transition metal-zirconium type alloys are also emphasized. This text likewise explains in detail how amorphous atomic structure affects magnetic, mechanical, chemical, corrosion, and electrical characteristics. Other topics include glass forming ability in metallic materials, scattering theory of amorphous metals, dynamics of inhomogeneous plastic flow, and powder production processes. This publication is intended for students and researchers conducting work on amorphous metallic alloys.