Download Free Metal Induced Crystallization Book in PDF and EPUB Free Download. You can read online Metal Induced Crystallization and write the review.

Crystalline semiconductors in the form of thin films are crucial materials for many modern, advanced technologies in fields such as microelectronics, optoelectronics, display technology, and photovoltaic technology. Crystalline semiconductors can be produced at surprisingly low temperatures (as low as 120C) by crystallization of amorphous semicon
This book on the Laser Crystallization of Silicon reviews the latest experimental and theoretical studies in the field. It has been written by recognised global authorities and covers the most recent phenomena related to the laser crystallization process and the properties of the resulting polycrystalline silicon. Reflecting the truly interdisciplinary nature of the field that the series covers, this volume will continue to be of great interest to physicists, chemists, materials scientists and device engineers in modern industry. - Valuable applications for industry, particularly in the fabrication of thin-film electronics - Each chapter has been peer reviewed - An important and timely contribution to the semiconductor literature
Crystallization is one of the most ancient and interdisciplinary topics of research known to mankind. Crystals can be organic or inorganic and may be produced from melts, liquid solutions, vapors or even in solid state. Notwithstanding its inherently high complexity, the crystallization process is part of our everyday lives, from ice making in our homes to the most state-of-the-art chemical and electronic industry. In this book, our purpose was to present new insights to the reader, as well as crucial and very useful information for researchers working in this field, while simultaneously creating a comprehensive text about crystallization processes which may serve as a starting point for people with different backgrounds.
Rapidly Quenched Metals, Volume I covers the proceedings of the Fifth International Conference on Rapidly Quenched Metals, held in Wurzburg, Germany on September 3-7, 1984. The book focuses on amorphous and crystalline metals formed by rapid quenching from the melt. The selection first covers the scope and trends of developments in rapid solidification technology, rapid solidification, and undercooling of liquid metals by rapid quenching. Discussions focus on experimental method, powders, strip, particulate production, consolidation, and alloys and alloy systems. The text then examines the solidification of undercooled liquid alloys entrapped in solid; crystallization kinetics in undercooled droplets; and grain refinement in bulk undercooled alloys. The manuscript tackles the undercooling of niobium-germanium alloys in a 100 meter drop tube; influence of process parameters on the cooling rate of the meltspinning process; and the mechanism of ribbon formation in melt-spun copper and copper-zirconium. The formation and structure of thick sections of rapidly-solidified material by incremental deposition and production of ultrafine dispersions of rare earth oxides in Ti alloys using rapid solidification are also mentioned. The selection is a valuable reference for physicists, chemists, physical metallurgists, and engineers.
Integrated Silicon-Metal Systems at the Nanoscale: Applications in Photonics, Quantum Computing, Networking, and Internet is a comprehensive guide to the interaction, materials and functional integration at the nanoscale of the silicon-metal binary system and a variety of emerging and next-generation advanced device applications, from energy and electronics, to sensing, quantum computing and quantum internet networks. The book guides the readers through advanced techniques and etching processes, combining underlying principles, materials science, design, and operation of metal-Si nanodevices. Each chapter focuses on a specific use of integrated metal-silicon nanostructures, including storage and resistive next-generation nano memory and transistors, photo and molecular sensing, harvest and storage device electrodes, phosphor light converters, and hydrogen fuel cells, as well as future application areas, such as spin transistors, quantum computing, hybrid quantum devices, and quantum engineering, networking, and internet. - Provides detailed coverage of materials, design and operation of metal-Si nanodevices - Offers a step-by-step approach, supported by principles, methods, illustrations and equations - Explores a range of cutting-edge emerging applications across electronics, sensing and quantum computing
The rapid pace of the electronic technology evolution compels a merger of technical areas such as low-power digital electronics, microwave power circuits, optoelectronics, etc., which collectively have become the foundation of today's electronic technology. The 1999 Workshop on Frontiers in Electronics gathered experts from academia, industry, and government agencies to review the recent exciting breakthroughs and their underlying physical mechanisms. The proceedings addresses controversial issues, provocative views, and visionary outlooks. Also included are discussions on the future trends, the directions of electronics technology and the market pulls, as well as the necessary policy and infrastructure changes.
This is the first reference on amorphous silicon and polycrystalline silicon thin film transistors that gives a systematic global review of all major topics in the field. These volumes include sections on basic materials and substrates properties, fundamental device physics, critical fabrication processes (structures, a-Si: H, dielectric, metallization, catalytic CVD), and existing and new applications. The chapters are written by leading researchers who have extensive experience with reputed track records. Thin Film Transistors provides practical information on preparing individual functional a-Si: H TFTs and poly-Si TFTs as well as large-area TFT arrays. Also covered are basic theories on the a-Si: H TFT operations and unique material characteristics. Readers are also exposed to a wide range of existing and new applications in industries.
A comprehensive depository of all information relating to the scientific and technological aspects of Shale Gas and Alternative Energy Conveniently arranged by energy type including Shale Gas, Wind, Geothermal, Solar, and Hydropower Perfect first-stop reference for any scientist, engineer, or student looking for practical and applied energy information Emphasizes practical applications of existing technologies, from design and maintenance, to operating and troubleshooting of energy systems and equipment Features concise yet complete entries, making it easy for users to find the required information quickly, without the need to search through long articles
Contributed papers of the workshop held at IIT, Madras, in 2003.