Download Free Metal Corrosion And Protection Book in PDF and EPUB Free Download. You can read online Metal Corrosion And Protection and write the review.

Introduction and Scope-During the last few decades, an enormous effort has been made to understand corrosion phenomena and their mechanisms, and to elucidate the causes that dramatically influence the service lifetime of metal materials. The performance of metal materials in aggressive environments is critical for a sustainable society. The failure of the material in service impacts the economy, the environment, health, and society. In this regard, corrosion-based economic losses due to maintenance, repair, and the replacement of existing structures and infrastructure account for up to 4% of gross domestic product (GDP) in well developed countries. One of the biggest issues in corrosion engineering is estimating service lifetime. Corrosion prediction has become very difficult, as there is no direct correlation with service lifetime and experimental lab results, usually as a result of discrepancies between accelerated testing and real corrosion processes. It is of major interest to forecast the impact of corrosion-based losses on society and the global economy, since existing structures and infrastructure are becoming old, and crucial decisions now need to be made to replace them. On the other hand, environmental protocols seek to reduce greenhouse effects. Therefore, low emission policies, in force, establish regulations for the next generation of materials and technologies. Advanced technologies and emergent materials will enable us to get through the next century. Great advances are currently in progress for the development of corrosion-resistant metal materials for different sectors, such as energy, transport, construction, and health. This Special Issue on the corrosion and protection of metals is focused on current trends in corrosion science, engineering, and technology, ranging from fundamental to applied research, thus covering subjects related to corrosion mechanisms and modelling, protection and inhibition processes, and mitigation strategies.
Corrosion may be defined as an unintentional attack on a material through reaction with a surrounding medium. The term can refer to a process or to the damage caused by such a process. According to this general definition, materials other than metals, such as ceramics, plastics or concrete, may also be subject to corrosion (or corrode). When no particular reference is made to the material, however, it is normally understood that a metal is being attacked. It is entirely in this limited sense that the term is used in this book. There are good reasons for treating the corrosion of metals separately, apart from deterioration or decay of other materials. Since metals have a high electric conductivity, their corrosion is usually of an electrochemical nature. The chemical deterioration of electrically non-conducting ma terials, such as plastics and ceramics, is governed by other physico-chemical principles. It is necessary to devote more attention to metallic corrosion nowadays than earlier, due to 1. An increased use of metals within all fields of technology. 2. The use for special applications, e.g. within the atomic energy field, of rare and expensive metals, whose preservation requires particular precautions. 3. A more corrosive environment due to the increasing pollution of air and water. 4. The use of metallic constructions of more slender dimensions which do not tolerate corrosive attacks to the same extent as did the heavy constructions used in the old days.
Corrosion due to water is one of the most significant and complex causes of damage to metallic products. Written from the viewpoint of physical chemistry, this authoritative and established text deals with the aqueous corrosion of metals. Available for the first time in English, Corrosion of Metal addressing engineers, metallurgists, physicists and chemists. This self-contained, valuable reference comprehensively organizes and makes readily accessible the accumulated wealth of fundamental and applied knowledge. The concentration is on the underlying essentials of corrosion and failure, and the material is consistently presented in relation to practical applications to corrosion protection. The first chapters introducing the physicochemical principles are ideal for students. The following chapters provide an overview of the state of research for those familiar with the fundamentals. An exhaustive bibliography and appendices conclude the volume.
One of the first thing that comes to your mind after hearing the term “corrosion” is corrosion of a metal. Corrosion is a basically harmful phenomenon, but it can be useful in some cases. For instance, environment’s pollution with corrosion products and damage to the performance of a system are among its harmful effects, whereas electric energy generation in a battery and cathodic protection of many structures are among its advantages. However, these advantages are almost nothing as compared to the costs and effects imposed by its detrimental influences. The enormous costs of this phenomenon can be better understand through studying the published statistics on direct and indirect corrosion damages on economy of governments. The direct cost of corrosion is near 3 % of the gross domestic product (GDP) of USA. Considering this huge cost, it is necessary to develop and expand the corrosion science and its protection technologies.
Intelligent Coatings for Corrosion Control covers the most current and comprehensive information on the emerging field of intelligent coatings. The book begins with a fundamental discussion of corrosion and corrosion protection through coatings, setting the stage for deeper discussion of the various types of smart coatings currently in use and in development, outlining their methods of synthesis and characterization, and their applications in a variety of corrosion settings. Further chapters provide insight into the ongoing research, current trends, and technical challenges in this rapidly progressing field. - Reviews fundamentals of corrosion and coatings for corrosion control before delving into a discussion of intelligent coatings—useful for researchers and grad students new to the subject - Covers the most current developments in intelligent coatings for corrosion control as presented by top researchers in the field - Includes many examples of current and potential applications of smart coatings to a variety of corrosion problems
Hot-dip galvanization is a method for coating steel workpieces with a protective zinc film to enhance the corrosion resistance and to improve the mechanical material properties. Hot-dip galvanized steel is the material of choice underlying many modern buildings and constructions, such as train stations, bridges and metal domes. Based on the successful German version, this edition has been adapted to include international standards, regulations and best practices. The book systematically covers all steps in hot-dip galvanization: surface pre-treatment, process and systems technology, environmental issues, and quality management. As a result, the reader finds the fundamentals as well as the most important aspects of process technology and technical equipment, alongside contributions on workpiece requirements for optimal galvanization results and methods for applying additional protective coatings to the galvanized pieces. With over 200 illustrated examples, step-by-step instructions, presentations and reference tables, this is essential reading for apprentices and professionals alike.
The use of conducting polymers for the anticorrosion protection of metals has attracted great interest during the last 30 years. The design and development of conducting polymers-based coating systems with commercial viability is expected to be advanced by applying nanotechnology and has received substantial attention recently. This book begins wit
High temperature corrosion is a phenomenon that occurs in components that operate at very high temperatures, such as gas turbines, jet engines and industrial plants. Engineers are constantly striving to understand and prevent this type of corrosion. This book examines the latest developments in the understanding of high temperature corrosion processes and protective oxide scales and coatings.Part one looks at high temperature corrosion. Chapters cover diffusion and solid state reactions, external and internal oxidation of alloys, metal dusting corrosion, tribological degradation, hot corrosion, and oxide scales on hot-rolled steel strips. Modern techniques for analysing high temperature oxidation and corrosion are also discussed. Part two discusses methods of protection using ceramics, composites, protective oxide scales and coatings. Chapters focus on layered ternary ceramics, alumina scales, Ti-Al intermetallic compounds, metal matrix composites, chemical vapour deposited silicon carbide, nanocrystalline coatings and thermal barrier coatings. Part three provides case studies illustrating some of the challenges of high temperature corrosion to industry and how they can be overcome. Case studies include the petrochemical industry, modern incinerators and oxidation processing of electronic materials.This book is a valuable reference tool for engineers who develop heat resistant materials, mechanical engineers who design and maintain high temperature equipment and plant, and research scientists and students who study high temperature corrosion and protection of materials. - Describes the latest developments in understanding high temperature corrosion - Presents the latest research by the leading innovators from around the globe - Case studies are provided to illustrate key points
Principles of Metal Surface Treatment and Protection deals with the principles of metal surface treatment and protection. Topics covered range from electrodeposition and hot dip coating to diffusion and non-metallic coatings, as well as oxide and conversion coatings. The theory of corrosion protection is also discussed. Comprised of eight chapters, this volume begins with an overview of the corrosion of metals and the scope of protection against corrosion, followed by a detailed treatment of electrodeposition. The discussion then turns to the principles of hot dipping as a coating method; the formation of a diffusion coating; and the role of a non-metallic coating in corrosion protection. Subsequent chapters focus on the protection of oxide films against corrosion by means of anodizing, phosphatizing, and the use of tin free steel; testing and selection of a particular coating for corrosion resistance applications; and the theory of corrosion protection. This book is intended for metal-finishing scientists and students of metallurgy and metal finishing.
Textbook; grad.