Download Free Metal Complexes Of Acyclic And Macrocyclic Multifunctional Ligands Book in PDF and EPUB Free Download. You can read online Metal Complexes Of Acyclic And Macrocyclic Multifunctional Ligands and write the review.

Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes II: State-of-the-art and Perspectives provides a critical review of the state-of-the-art developments in industrially relevant processes connected to efficient and selective olefin upgrading. Specific attention is devoted to catalysts containing imine- and amine-based ligands. All the chapters in this book have been designed to provide a systematic account of the vast amount of information available for this type of catalyst as well as to highlight the factors that ultimately control the catalyst’s performance and productivity. A comprehensive panorama of catalyst precursors is presented, spanning from group 10 α-diimine complexes and iron and cobalt 2,6-bis(imino)pyridine derivatives, to vanadium, chromium, titanium, zirconium and lanthanide complexes supported by nitrogen-containing ligands. The authors of this collective work are currently involved in the development of imine-based catalysts for efficient and selective olefin upgrading and the majority of them have dedicated most of their scientific career to this important field. In writing this book, their major goal is to transfer as many ideas and experiences as possible to the global audience of scientists engaged in this area of research.
Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.
“The story is told by THE inventor-pioneer-master in the field and is accompanied by amazing illustrations… [it] will become an absolute reference and a best seller in chemistry!” Alberto Credi “… the great opus on the mechanical bond. A most impressive undertaking!” Jean-Marie Lehn Congratulations to co-author J. Fraser Stoddart, a 2016 Nobel Laureate in Chemistry. In molecules, the mechanical bond is not shared between atoms—it is a bond that arises when molecular entities become entangled in space. Just as supermolecules are held together by supramolecular interactions, mechanomolecules, such as catenanes and rotaxanes, are maintained by mechanical bonds. This emergent bond endows mechanomolecules with a whole suite of novel properties relating to both form and function. They hold unlimited promise for countless applications, ranging from their presence in molecular devices and electronics to their involvement in remarkably advanced functional materials. The Nature of the Mechanical Bond is a comprehensive review of much of the contemporary literature on the mechanical bond, accessible to newcomers and veterans alike. Topics covered include: Supramolecular, covalent, and statistical approaches to the formation of entanglements that underpin mechanical bonds in molecules and macromolecules Kinetically and thermodynamically controlled strategies for synthesizing mechanomolecules Chemical topology, molecular architectures, polymers, crystals, and materials with mechanical bonds The stereochemistry of the mechanical bond (mechanostereochemistry), including the novel types of dynamic and static isomerism and chirality that emerge in mechanomolecules Artificial molecular switches and machines based on the large-amplitude translational and rotational motions expressed by suitably designed catenanes and rotaxanes. This contemporary and highly interdisciplinary field is summarized in a visually appealing, image-driven format, with more than 800 illustrations covering both fundamental and applied research. The Nature of the Mechanical Bond is a must-read for everyone, from students to experienced researchers, with an interest in chemistry’s latest and most non-canonical bond. Read the Preface
Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs serves as a comprehensive and state-of the art review on these promising compounds, delivering a panorama of their extensive and rapidly growing applications. After an introductory chapter on the theoretical description of the optical and magnetic behaviour of lanthanides and on the prediction of their properties by ab-initio methods, four chapters are devoted to lanthanide-based OLEDs, including the latest trends in visible emitters, the emerging field of near infrared emitters and the first achievements attained in the field of chiral OLEDs. The use of lanthanide complexes as molecular magnets spreads over another two chapters, which explain the evolution of 4f-elements-based SIMs and the most recent advances in heterometallic 3d–4f SMMs. Other very active research areas are covered in the remaining five chapters, dedicated to lanthanide-doped germanate and tellurite glasses, luminescent materials for up-conversion, luminescent thermosensors, multimodal imaging and therapeutic agents, and chemosensors. The book is aimed at academic and industrial researchers, undergraduates and postgraduates alike, and is of particular interest for the Materials Science, Applied Physics and Applied Chemistry communities. - Includes the latest progress on lanthanide-based materials and their applications (in OLEDs, SIMs, doped matrices, up-conversion, thermosensors, theragnostics and chemosensors) - Presents basic and applied aspects of the Physics and Chemistry of lanthanide compounds, as well as future lines of action - Covers successful examples of devices and proofs-of-concept and provides guidelines for the rational design of new materials
Lanthanides: Fundamentals and Applications provides the fundamentals, new research, promising applications and future outlooks of lanthanide compounds and lanthanide-based materials. The book begins with an introduction, including key concepts, oxidation states and sources, extraction and separation of the lanthanides, followed by spectroscopic and magnetic properties, and metals, crystals and compounds. Organometallic compounds, coordination compounds, molecular magnetic materials and luminescent materials are covered before a discussion of specific lanthanide applications. Spintronics, bioimaging, photoelectric materials, catalysis and nuclear applications are discussed. This comprehensive resource is ideal for researchers and students studying inorganic and materials chemistry, in both academia and industry. - Includes comprehensive and in-depth coverage of lanthanides - Features the most current research progress on lanthanides - Covers a combination view of fundamental research and specific applications of the lanthanides, including spintronics, bioimaging and additives for photoelectric materials
This book reviews the current diagnostic and therapeutic uses of metal-containing compounds in medicine, as well as the role of metals in disease.