Download Free Metagenomics Of The Microbial Nitrogen Cycle Book in PDF and EPUB Free Download. You can read online Metagenomics Of The Microbial Nitrogen Cycle and write the review.

Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.
This book describes the state-of-the-art concerning the ‘marine microbiome’ and its uses in biotechnology. The first part discusses the diversity and ecology of marine microorganisms and viruses, including all three domains of life: Bacteria, Archaea, and Eukarya. It discusses whether marine microorganisms exist and, if so, why they might be unique. The second part presents selected marine habitats, their inhabitants and how they influence biogeochemical cycles, while the third discusses the utilization of marine microbial resources, including legal aspects, dissemination, and public awareness. The marine microbiome is the total of microorganisms and viruses in the ocean and seas and in any connected environment, including the seafloor and marine animals and plants. The diversity of microbial life remains unquantified and largely unknown, and could represent a hidden treasure for human society. Accordingly, this book is also intended to connect academics and industry, providing essential information for microbiologists from both fields.
Nitrogen is an essential element in biological systems, and one that often limits production in both aquatic and terrestrial systems. Due to its requirement in biological macromolecules, its acquisition and cycling have the potential to structure microbial communities, as well as to control productivity on the ecosystem scale. In addition, its versatile redox chemistry is the basis of complex biogeochemical transformations that control the inventory of fixed nitrogen, both in local environments and over geological time. Although many of the pathways in the microbial nitrogen cycle were described more than a century ago, additional fundamental pathways have been discovered only recently. These findings imply that we still have much to learn about the microbial nitrogen cycle, the organisms responsible for it, and their interactions in natural and human environments. Progress in nitrogen cycle research has been facilitated by recent rapid technological advances, especially in genomics and isotopic approaches. In this Research Topic, we reviewed the leading edge of nitrogen cycle research based on these approaches, as well as by exploring microbial processes in modern ecosystems.
Concisely discussing the application of high throughput analysis to move forward our understanding of microbial principles, Metagenomics for Microbiology provides a solid base for the design and analysis of omics studies for the characterization of microbial consortia. The intended audience includes clinical and environmental microbiologists, molecular biologists, infectious disease experts, statisticians, biostatisticians, and public health scientists. This book focuses on the technological underpinnings of metagenomic approaches and their conceptual and practical applications. With the next-generation genomic sequencing revolution increasingly permitting researchers to decipher the coding information of the microbes living with us, we now have a unique capacity to compare multiple sites within individuals and at higher resolution and greater throughput than hitherto possible. The recent articulation of this paradigm points to unique possibilities for investigation of our dynamic relationship with these cellular communities, and excitingly the probing of their therapeutic potential in disease prevention or treatment of the future. - Expertly describes the latest metagenomic methodologies and best-practices, from sample collection to data analysis for taxonomic, whole shotgun metagenomic, and metatranscriptomic studies - Includes clear-headed pointers and quick starts to direct research efforts and increase study efficacy, eschewing ponderous prose - Presented topics include sample collection and preparation, data generation and quality control, third generation sequencing, advances in computational analyses of shotgun metagenomic sequence data, taxonomic profiling of shotgun data, hypothesis testing, and mathematical and computational analysis of longitudinal data and time series. Past-examples and prospects are provided to contextualize the applications.
Litter Decomposition describes one of the most important processes in the biosphere - the decay of organic matter. It focuses on the decomposition process of foliar litter in the terrestrial systems of boreal and temperate forests due to the greater amount of data from those biomes. The availability of several long-term studies from these forest types allows a more in-depth approach to the later stages of decomposition and humus formation. Differences between the decay of woody matter and foliar litter is discussed in detail and a different pattern for decomposition is introduced. While teachers and students in more general subjects will find the most basic information on decomposition processes in this book, scientists and graduate students working on decomposition processes will be entirely satisfied with the more detailed information and the overview of the latest publications on the topic as well as the methodological chapter where practical information on methods useful in decomposition studies can be found. Abundant data sets will serve as an excellent aid in teaching process and will be also of interest to researchers specializing in this field as no thorough database exists at the moment. Provides over 60 tables and 90 figures Offers a conceptual 3-step model describing the different steps of the decomposition process, demonstrating changes in the organic-chemical structure and nutrient contents Includes a synthesis of the current state of knowledge on foliar litter decomposition in natural systems Integrates more traditional knowledge on organic matter decomposition with current problems of environmental pollution, global change, etc. Details contemporary knowledge on organic matter decomposition
Pond treatment technology is used in tens of thousands of applications serving many millions of people across the globe - why? Simply because it is efficient and effective. While pond treatment technology offers relative simplicity in its application, it incorporates a host of complex and diverse mechanisms that work to treat and cleanse polluted waters before their return to our environment. This book offers a comprehensive review of the pond technology field including the newest ideas and latest findings. Topics covered include: The physical, chemical and biological characteristics of the pond environment; A detailed review of pond treatment mechanisms and performance; Comprehensive guidance on pond design, operation and upgrade options; A range of chapters summarising new and emerging pond technologies; The integration of ponds with wetlands and aquaculture systems and their use as storage reservoirs; Special applications of pond technology in cold climates, for agricultural wastes and for treatment of stormwater. The objective of this book is to get this wealth of knowledge "out there" to the users to ensure the continuous improvement and ongoing success of this crucial technology.
The existence of living organisms in diverse ecosystems has been the focus of interest to human beings, primarily to obtain insights into the diversity and dynamics of the communities. This book discusses how the advent of novel molecular biology techniques, the latest being the next-generation sequencing technologies, helps to elucidate the identity of novel organisms, including those that are rare. The book highlights the fact that oceans, marine environments, rivers, mountains and the gut are ecosystems with great potential for obtaining bioactive molecules, which can be used in areas such as agriculture, food, medicine, water supplies and bioremediation. It then describes the latest research in metagenomics, a field that allows elucidation of the maximum biodiversity within an ecosystem, without the need to actually grow and culture the organisms. Further, it describes how human-associated microbes are directly responsible for our health and overall wellbeing.“/p>
The nitrogen (N) cycle is one of the most important nutrient cycles on the planet, and many of its steps are performed by microbial organisms. During the cycling process, greenhouse gases are formed, including nitrous oxide and methane. In addition, the use of nitrogen fertilizers increases freshwater nitrate levels, causing pollution and human health problems. A greater knowledge of the microbial communities involved in nitrogen transformations is necessary to understand and counteract nitrogen pollution. This book - written by renowned researchers who are specialized in the most relevant and emerging topics in the field - provides comprehensive information on the new theoretical, methodological, and applied aspects of metagenomics and other 'omics' approaches used to study the microbial N cycle. The book provides a thorough account of the contributions of metagenomics to microbial N cycle background theory. It also reviews state-of-the-art investigative methods and explores new applications in water treatment, agricultural practices, climate change, among others. The book is recommended for microbiologists, environmental scientists, and anyone interested in microbial communities, metagenomics, metatranscriptomics, and metaproteomics of the microbial N cycle.
Selected recent hot-topics in the application of advanced omics methods to the field of microbial ecology.