Download Free Mercury Cycling In A Wetland Dominated Ecosystem Book in PDF and EPUB Free Download. You can read online Mercury Cycling In A Wetland Dominated Ecosystem and write the review.

This book integrates 30 years of mercury research in the Florida Everglades to inform scientists and policy makers. The Everglades is an iconic ecosystem by virtue of its expanse; diversity of biota; and multiple international designations. Despite this, the Everglades has been subjected to multiple threats including: habitat loss, hydrologic alterations, invasive species and altered water quality. Less well recognized as a threat to Everglades human use and wildlife populations is the toxic metal, mercury. The first half of Volume II focuses on biogeochemistry and factors unique to the Everglades that make it extraordinarily susceptible to mercury methylation following its deposition: warm subtropical climate, shallow depth, high levels of dissolved organic matter, sulfate contamination, nutrient enrichment and sediment redox conditions (for review of atmospheric mercury deposition significance, see Vol. I). The second half of Volume II answers the “so what” question – why biomagnification of the methylmercury produced in the Everglades is a threat to the health of top predators including humans. The results of the synthesis presented in Volume II suggest that the mercury problem in the Florida Everglades is one of the worst in the world due to its areal extent and the degree of risk to ecological receptors and humans.
This book provides the fundamentals, recent developments, and future research needs for critical mercury transformation and transport processes, as well as the experimental methods that have been employed in recent studies. The coverage discusses the environmental behavior and toxicological effects of mercury on organisms, including humans, and provides case studies at the end of each chapter. Bringing together information normally spread across several books, this text is unique in covering the entire mercury cycle and providing a baseline for what is known and what uncertainties remain in respect to mercury cycling.
Essential themes in the biochemical cycling of mercury are the relative importance of anthropogenic versus natural sources, transformation and migration processes at the local, regional and global scale, global emission inventories of different mercury sources (both point and diffuse) of both natural and anthropogenic origin. In this regard, Siberia, with its vast territory and variety of natural zones, is of special interest in the global mercury cycle and in terms of the influence of geographical zones on source and sink terms in regional budgets. Siberia contains large areas of mercuriferous belts; natural deposits that emit mercury into the atmosphere and water. Siberian gold has been mined with the use of mercury since the early 1800s. But there, too, huge forest zones and vast areas of tundra and wetland (bogs) can act as efficient sinks for atmospheric mercury. Audience: Environmental scientists, legislators, politicians and the interested citizen wishing to gain a clear picture of the biogeochemical cycling of mercury.
Anthropogenic emissions of mercury into the atmosphere have increased mercury deposition that, in turn, has led to a large legacy of mercury accumulation in terrestrial ecosystems and increased mercury contamination of surface waters. Despite efforts to control anthropogenic emissions of mercury, it is possible that release of mercury historically deposited to forests and wetlands will moderate the recovery of aquatic ecosystems. This research examined the biogeochemical cycling of mercury in different wetland types in the Adirondack region of New York and in a forested headwater catchment during snowmelt at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains of New Hampshire. Mercury pool size varied across the upland-wetland interface, among wetland types, across individual wetland transects, and along depth profiles in soils of forests and wetlands of the Adirondack region. In mineral horizons of uplands and shallow peat riparian wetlands, mercury was strongly correlated with carbon (p=0.002, r2=0.73), and nitrogen (p0.001, r2=0.82), but not sulfur. In contrast, there was a strong correlation between mercury and sulfur in peat of headwater wetlands (p
A wide-ranging compilation of techniques, Extrapolation Practice for Ecotoxicological Effect Characterization of Chemicals describes methods of extrapolation in the framework of ecological risk assessment. The book, informally known as EXPECT, identifies data needs and situations where these extrapolations can be most usefully applied, makin
Long-term population monitoring is an important tool in our investigations of the role waterbirds play in their environment. This book is international in scope and presents information on species as diverse as the Common Loon, Harlequin Duck, and Semi-Palmated Sandpiper, and habitat in locations ranging from Iceland to Japan. Papers presented in this volume further our understanding of the important role that limnology plays in determining habitat suitability for waterbirds.
Choosing the optimal management option requires environmental risk managers and decision makers to evaluate diverse, and not always congruent, needs and interests of multiple stakeholders. Understanding the trade-offs of different options as well as their legal, economic, scientific, and technological implications is critical to performing accurate
Most ecological risk assessments consider the risk to individual organisms or organism-level attributes. From a management perspective, however, risks to population-level attributes and processes are often more relevant. Despite many published calls for population risk assessment and the abundance of available scientific research and technical tool