Download Free Membrane Protein Structure Determination Book in PDF and EPUB Free Download. You can read online Membrane Protein Structure Determination and write the review.

This book examines detailed experimental and computational approaches for the analysis of many aspects vital to the understanding of membrane protein structure and function. Readers will receive guidance on the selection and use of methods for over-expression and purification, tools to characterize membrane proteins within different phospholipid bilayers, direction on functional studies, and approaches to determine the structures of membrane proteins. Detailed experimental steps for specific membrane proteins with critical notes allow the protocols to be modified to different systems. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of practical information and implementation advice that leads to excellent, reproducible results. Authoritative and up-to-date, Structure and Function Studies of Membrane Proteins serves as an ideal guide for biologists, biochemists, and biophysicists striving to further understand these essential proteins and their many biological roles.
Knowledge of the three-dimensional structure of a protein is absolutely required for the complete understanding of its function. The spatial orientation of amino acids in the active site of an enzyme demonstrates how substrate specificity is defined, and assists the medicinal chemist in the design of s- cific, tight-binding inhibitors. The shape and contour of a protein surface hints at its interaction with other proteins and with its environment. Structural ana- sis of multiprotein complexes helps to define the role and interaction of each individual component, and can predict the consequences of protein mutation or conditions that promote dissociation and rearrangement of the complex. Determining the three-dimensional structure of a protein requires milligram quantities of pure material. Such quantities are required to refine crystallization conditions for X-ray analysis, or to overcome the sensitivity limitations of NMR spectroscopy. Historically, structural determination of proteins was limited to those expressed naturally in large amounts, or derived from a tissue or cell source inexpensive enough to warrant the use of large quantities of cells. H- ever, with the advent of the techniques of modern gene expression, many p- teins that are constitutively expressed in minute amounts can become accessible to large-scale purification and structural analysis.
Membrane proteins, representing nearly 40% of all proteins, are key components of cells involved in many cellular processes, yet only a small number of their structures have been determined. Membrane Protein Structure Determination: Methods and Protocols presents many detailed techniques for membrane protein structure determination used today by bringing together contributions from top experts in the field. Divided into five convenient sections, the book covers various strategies to purify membrane proteins, approaches to get three dimensional crystals and solve the structure by x-ray diffraction, possibilities to gain structural information for a membrane protein using electron microscopy observations, recent advances in nuclear magnetic resonance (NMR), and molecular modelling strategies that can be used either to get membrane protein structures or to move from atomic structure to a dynamic understanding of a molecular functioning mechanism. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Membrane Protein Structure Determination: Methods and Protocols serves as an ideal reference for scientists seeking to further our knowledge of these vital and versatile proteins as well as our overall understanding of the complicated world of cell biology.
This book reviews current techniques used in membrane protein structural biology, with a strong focus on practical issues. The study of membrane protein structures not only provides a basic understanding of life at the molecular level but also helps in the rational and targeted design of new drugs with reduced side effects. Today, about 60% of the commercially available drugs target membrane proteins and it is estimated that nearly 30% of proteins encoded in the human genome are membrane proteins. In recent years much effort has been put towards innovative developments to overcome the numerous obstacles associated with the structure determination of membrane proteins. This book reviews a variety of recent techniques that are essential to any modern researcher in the field of membrane protein structural biology. The topics that are discussed are not commonly found in textbooks. The scope of this book includes: Expression screening using fluorescent proteins The use of detergents in membrane protein research The use of NMR Synchrotron developments in membrane protein structural biology Visualisation and X-ray data collection of microcrystals X-ray diffraction data analysis from multiple crystals Serial millisecond crystallography Serial femtosecond crystallography Membrane protein structures in drug discovery The information provided in this book should be of interest to anyone working in the area of structural biology. Students will find carefully prepared overviews of basic ideas and advanced protein scientists will find the level of detail required to apply the material directly to their day to day work. Chapters 4, 5, 6, 8 and 9 of this book are published open access under a CC BY 4.0 license at link.springer.com.
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
The precise knowledge of the structure of biological macromolecules forms the basis of understanding their function and their mechanism of action. It also lays the foundation for rational protein and drug design. The only method to obtain this knowledge is still crystallography. At present, the structures of about 400 proteins are known at or nearly at atomic proteins. However, only two of them are membrane proteins or complexes of the membrane proteins. The reasons for the difference is not the crystals of membrane proteins resists forming special problems when being analysed. The reason is that the membrane proteins resist into forming into well-ordered crystals. The intention of this book is to help to produce well-ordered crystals proteins and to provide guidelines, it is aimed at both biochemists and protein crystallographer‘s.
This volume provides recent advances in the field of biophysics of membrane proteins. Chapters are divided into several parts: detailing biochemistry and functional analysis, experimental and theoretical structural determinations, membrane protein dynamics, and conformation studies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Biophysics of Membrane Proteins: Methods and Protocols aims to provide comprehensive protocols with notes to help further the understanding of key membrane protein structure and function for students, academics, and industrial researchers.
This volume of Current Topics in Membranes focuses on Membrane Protein Crystallization, beginning with a review of past successes and general trends, then further discussing challenges of mebranes protein crystallization, cell free production of membrane proteins and novel lipids for membrane protein crystallization. This publication also includes tools to enchance membrane protein crystallization, technique advancements, and crystallization strategies used for photosystem I and its complexes, establishing Membrane Protein Crystallization as a needed, practical reference for researchers.
This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.