Download Free Membrane Engineering For The Treatment Of Gases Volume 1 Book in PDF and EPUB Free Download. You can read online Membrane Engineering For The Treatment Of Gases Volume 1 and write the review.

Volume 1. Gas-separation issues with membranes -- volume 2. Gas-separation issues combined with membrane reactors.
Elaborating on recent and future developments in the field of membrane engineering, Volume 1 focuses on new membrane materials which have recently emerged in gas separation. Covering graphene/graphene oxide based membranes, PIMs, thermally rearranged membranes, and new mixed matrix membranes, alongside membrane pilot plant trials of gas separation, such as CO2 from flue gas and biogas, as well as a cost analysis of competitive membrane and hybrid systems, this book provides a comprehensive account. Together with Volume 2, these books form an innovative reference work on membrane engineering and technology in the field of gas separation and gaseous phase membrane reactors.
This two-volume set presents the state of the art, and potential for future developments, in membrane engineering for the separation of gases.
This two volume set presents the state-of-the-art, and potential for future developments, in membrane engineering for the separation of gases.
Membranes already have important applications in artificial organs, the processing of biotechnological products, food manufacture, waste water treatment, and seawater desalination. Their uses in gaseous mixture separations are, however, far from achieving their full potential. Separation of air components, natural gas dehumidification and sweeting, separation and recovery of CO2 from biogas, and H2 from refinery gases are all examples of current industrial applications. The use of membranes for reducing the greenhouse effect and improving energy efficiency has also been suggested. New process intensification strategies in the petrochemical industry have opened up another growth area for gas separation membrane systems and membrane reactors. This two volume set presents the state-of-the-art in membrane engineering for the separation of gases. It addresses future developments in carbon capture and utilization, H2 production and purification, and O2/N2 separation. Topics covered include the: applications of membrane gas separation in the petrochemical industry; implementation of membrane processes for post-combustion capture; commercial applications of membranes in gas separations; simulation of membrane systems for CO2 capture; design and development of membrane reactors for industrial applications; Pd-based membranes in hydrogen production; modelling and simulation of membrane reactors for hydrogen production and purification; novel hybrid membrane/pressure swing adsorption process for gas separation; molecular dynamics as a new tool for membrane design, and physical aging of membranes for gas separations. Volume 2 looks at problems combined with membrane reactors.
Volume 1. Gas-separation issues with membranes -- volume 2. Gas-separation issues combined with membrane reactors.
Modern membrane science and technology aids engineers in developing and designing more efficient and environmentally-friendly processes. The optimal material and membrane selection as well as applications in the many involved industries are provided. This work is the ideal introduction for engineers working in membrane science and applications (wastewater, desalination, adsorption, and catalysis), process engineers in separation science, biologists and biochemists, environmental scientists, and most of all students. Its multidisciplinary approach also stimulates thinking of hybrid technologies for current and future life-saving applications (artificial organs, drug delivery).
27th European Symposium on Computer Aided Process Engineering, Volume 40 contains the papers presented at the 27th European Society of Computer-Aided Process Engineering (ESCAPE) event held in Barcelona, October 1-5, 2017. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students, and consultants for chemical industries. - Presents findings and discussions from the 27th European Society of Computer-Aided Process Engineering (ESCAPE) event
Current Trends and Future Developments in (Bio-) Membranes: Recent Advances in Metallic Membranes presents recent developments in metallic membranes used in membrane reactors to save energy. It also offers a comprehensive review of the present state-of-the-art on the fabrication and design of metallic membranes and membrane reactors, considering various applications. This book focuses on the structure, preparation, characterization and applications of metallic membranes and membrane reactors, as well as transport mechanisms and simulation aspects. As recent research has focused on the development of metallic membranes and their applications, this book is an ideal reference on different production procedures and their use. - Reviews metallic membranes research and applications - Outlines the mechanisms of metallic membrane based processes - Includes structure, preparation, characterization and properties of metallic membranes - Highlights various applications of metallic membranes in energy production
Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing presents the latest on the design of nanoscale materials and their applications in sustainable chemical production processes. The newest achievements of materials science, in particular nanomaterials, opened new opportunities for chemical engineers to design more efficient, safe, compact and environmentally benign processes. These materials include metal-organic frameworks, graphene, membranes, imprinted polymers, polymers of intrinsic microporosity, nanoparticles, and nanofilms, to name a few. Topics discussed include gas separation, CO2 sequestration, continuous processes, waste valorization, catalytic processes, bioengineering, pharmaceutical manufacturing, supercritical CO2 technology, sustainable energy, molecular imprinting, graphene, nature inspired chemical engineering, desalination, and more. - Describes new, efficient and environmentally accepted processes for nanomaterials design - Includes a large array of materials, such as metal-organic frameworks, graphene, imprinted polymers, and more - Explores the contribution of these materials in the development of sustainable chemical processes