Download Free Mechanics Of Wind Blown Sand Movements Book in PDF and EPUB Free Download. You can read online Mechanics Of Wind Blown Sand Movements and write the review.

Mechanics plays a fundamental role in aeolian processes and other environmental studies. This proposed book systematically presents the new progress in the research of aeolian processes, especially in the research on mechanism, theoretical modelling and computational simulation of aeolian processes from the viewpoint of mechanics. Nowadays, environmental and aeolian process related problems are attracting more and more attention. We hope this proposed book will provide scientists and graduate students in aeolian research and other environmental research some mechanical methods and principles and introduce aeolian related problems of environment to mathematical and mechanical scientists.
The first book to deal exclusively with the behavior of blown sand and related land forms, its accessible style makes it an enduring reference. 84 figures. 16 halftones.
It is more than half a century since the publication of R. A. Bagnold’s classic book The physics of blown sand and desert dunes, and it is a tribute to the quality of Bagnold’s work that many of the fundamental principles which he developed - main valid today. His book continues to be essential reading for any serious s- dent of aeolian processes. However, the past two decades have seen an explosion in the scale of research dealing with aeolian transport processes, sediments, and landforms. Some of this work has been summarized in review papers and edited conference proceedings, but this book provides the rst attempt to review the whole eld of aeolian sand research. Inevitably, it has not been possible to cover all - pects in equal depth, and the balance of included material naturally re ects the - thors’ own interests to a signi cant degree. However, our aim has been to provide as broad a perspective as possible, and to provide an entry point to an extensive mul- disciplinary scienti c literature, some of which has not been given the attention it deserves in earlier textbooks and review papers. Many examples are drawn from existing published work, but the book also makes extensive use of our own research in the Middle East, Australia, Europe, and North America. The book has been written principally for use by advanced undergraduates, po- graduates, and more senior research workers in geomorphology and sedimentology.
Wind erosion occurs in many arid, semiarid and agricultural areas of the world. It is an environmental process in?uenced by geological and climatic variations as well as human activities. In general, wind erosion leads to land degradation in agricultural areas and has a negative impact on air quality. Dustemissiongeneratedbywinderosionisthelargestsourceofaerosolswhich directly or indirectly in?uence the atmospheric radiation balance and hence global climatic variations. Strong wind-erosion events, such as severe dust storms, may threaten human lives and cause substantial economic damage. The physics of wind erosion is complex, as it involves atmospheric, soil and land-surface processes. The research on wind erosion is multidisciplinary, covering meteorology, ?uid dynamics, soil physics, colloidal science, surface soil hydrology, ecology, etc. Several excellent books have already been written about the topic, for instance, by Bagnold (1941, The Physics of Blown Sand and Desert Dunes), Greeley and Iversen (1985, Wind as a Geological P- cess on Earth, Mars, Venus and Titan), Pye (1987, Aeolian Dust and Dust Deposits), Pye and Tsoar (1990, Aeolian Sand and Sand Dunes). However, considerable progress has been made in wind-erosion research in recent years and there is a need to systematically document this progress in a new book.
This book gives an account of geological aspects of windblown material. Aeolian processes play an important role in modifying the surface of the Earth, and they are also active on Mars. Additionally, they are thought to occur on Venus and possibly Titan as well. The authors describe the following aspects: wind as a geological process, the aeolian environment, physics of particle motion, aeolian abrasion and erosion; aeolian sand deposits and bedforms, interaction of wind and topography and windblown dust. A particular strength of the book is that it deals with aeolian processes in a planetary context, rather than as a purely terrestrial phenomenon. In so doing, the authors ably demonstrate how we can gain better understanding of the Earth through comparative planetology. This paperback reissue will enable the book to be used as a text for advanced students in planetary science. Special terms are defined when they are first used. There is a glossary and an exhaustive bibliography.
Aridity prevails over more than one third of the land area of the Earth and over a significant fraction of the oceans as well. Yet to date there has been no comprehensive reference volume or textbook dealing with the weather processes that define the character of desert areas. Desert Meteorology fills this gap by treating all aspects of desert weather.
A revised introduction to aeolian geomorphology written by noted experts in the field The new, revised and updated edition of Aeolian Geomorphology offers a concise and highly accessible introduction to the subject. The text covers the topics of deserts and coastlines, as well as periglacial and planetary landforms. The authors review the range of aeolian characteristics that include soil erosion and its consequences, continental scale dust storms, sand dunes and loess. Aeolian Geomorphology explores the importance of aeolian processes in the past, and the application of knowledge about aeolian geomorphology in environmental management. The new edition includes contributions from eighteen experts from four continents. All the chapters demonstrate huge advances in observation, measurement and mathematical modelling. For example, the chapter on sand seas shows the impact of greatly enhanced and accessible remote sensing and the chapter on active dunes clearly demonstrates the impact of improvements in field techniques. Other examples reveal the power of greatly improved laboratory techniques. This important text: Offers a comprehensive review of aeolian geomorphology Contains contributions from an international panel of eighteen experts in the field Includes the results of the most recent research on the topic Filled with illustrative examples that demonstrate the advances in laboratory approaches Written for students and professionals in the field, Aeolian Geomorphology provides a comprehensive introduction to the topic in twelve new chapters with contributions from noted experts in the field.
Material Science and Environmental Engineering presents novel and fundamental advances in the fields of material science and environmental engineering. Collecting the comprehensive and state-of-art in these fields, the contributions provide a broad overview of the latest research results, so that it will proof to be a valuable reference book to aca
This book describes how sand dunes work, why they are the way they are in different settings, and how they are being studied. Particular attention is paid to their formation and appearance elsewhere in the solar system. New developments in knowledge about dunes make for an interesting story – like the dunes themselves, dune science is dynamic – and the visual appeal of Aeolian geomorphology ensures that this is an attractive volume. The book is divided into 4 parts, the first of which introduces dunes as a planetary phenomenon, showing a landscape reflecting the balance of geological processes – volcanism, impact, tectonics, erosion, deposition of sediments. Dunes are then considered as emergent dynamical systems: the interaction of sand and wind conspires to generate very characteristic and reproducible shapes. Analogies are given with other emergent structures such as patterned ground before the influence of dunes on desert peoples and infrastructure is studied, together with their use as forensic climatological indicators. Dune Physics is looked at with regard to the mechanics of sand, the physics of wind, saltation – interaction of sand and air – dunes versus ripples and transverse Aeolian ridges, the classification of dune morphology and the sources and sinks of sand. Dune Trafficability considers soil mechanics, effects on mobility on Earth, Mars and elsewhere. In the second part, Earth, Mars, Titan and other moons and planets are examined, beginning with a survey of the major deserts and dunefields on Earth. The authors then turn to Mars and its environment, sediment type, dune stratigraphy, sediment source and sinks and the association of dunes with topographic features. Titan follows - its thick, cold atmosphere, methane dampness, low gravity, morphology – interaction with topography and the implications of dunes for climate and winds. Dunes elsewhere conclude this part. There are few dunefields on Venus, but there is a .possibility of Aeolian transport on Triton and volcanic-related windstreaks on Io.