Download Free Mechanics And Fatigue In Wheel Rail Contact Book in PDF and EPUB Free Download. You can read online Mechanics And Fatigue In Wheel Rail Contact and write the review.

These proceedings demonstrate the increasing interest and importance of contact mechanics and wear to the railway industry. The 27 contributions succeed in sustaining a balance between mechanics and metallurgy, theory and practice, and will be of considerable interest to those engaged in research, as well as practising engineers.
Many of the engineering problems of particular importance to railways arise at interfaces and the safety-critical role of the wheel/rail interface is widely acknowledged. Better understanding of wheel/rail interfaces is therefore critical to improving the capacity, reliability and safety of the railway system.Wheel-rail interface handbook is a one-stop reference for railway engineering practitioners and academic researchers. Part one provides the fundamentals of contact mechanics, wear, fatigue and lubrication as well as state-of-the-art research and emerging technologies related to the wheel/rail interface and its management. Part two offers an overview of industrial practice from several different regions of the world, thereby providing an invaluable international perspective with practitioners' experience of managing the wheel/rail interface in a variety of environments and circumstances.This comprehensive volume will enable practising railway engineers, in whatever discipline of railway engineering – infrastructure, vehicle design and safety, and so on – to enhance their understanding of wheel/rail issues, which have a major influence on the running of a reliable, efficient and safe railway. - One-stop reference on the important topic of wheel rail-interfaces - Presents the fundamentals of contact mechanics, wear, fatigue and lubrication - Examines state-of-the-art research and emerging technologies related to wheel-rail interface and its management
This open access book contains a structured collection of the complete solutions of all essential axisymmetric contact problems. Based on a systematic distinction regarding the type of contact, the regime of friction and the contact geometry, a multitude of technically relevant contact problems from mechanical engineering, the automotive industry and medical engineering are discussed. In addition to contact problems between isotropic elastic and viscoelastic media, contact problems between transversal-isotropic elastic materials and functionally graded materials are addressed, too. The optimization of the latter is a focus of current research especially in the fields of actuator technology and biomechanics. The book takes into account adhesive effects which allow access to contact-mechanical questions about micro- and nano-electromechanical systems. Solutions of the contact problems include both the relationships between the macroscopic force, displacement and contact length, as well as the stress and displacement fields at the surface and, if appropriate, within the half-space medium. Solutions are always obtained with the simplest available method - usually with the method of dimensionality reduction (MDR) or approaches which use the solution of the non-adhesive normal contact problem to solve the respective contact problem.
Fatigue is a major issue affecting safety and quality of service in the railway industry. This book reviews key aspects of this important subject. It begins by providing an overview of the subject, discussing fatigue at the wheel-rail interface and in other aspects of infrastructure. It then considers fatigue in railway and tramway track, looking at causes of potential failure in such areas as rails and fixings as well as sleepers. It also reviews failure points in structures such as embankments and cuttings. The book analyses fatigue in railway bridges, looking in particular at masonry arch bridges as well as metal and concrete bridges. Two final chapters review safety and reliability issues affecting escalators and lifts.Fatigue in railway infrastructure is a helpful reference for those in the railway industry responsible for infrastructure maintenance as well as those researching this important subject. - Provides a concise review of fatigue in the railway infrastructure - Examines the causes of potential failure in rails, fixings and sleepers - Analyses fatigue in railway bridges including masonry arch, metal and concrete structures
This treatise is concerned with the stresses and deformation of solid bodies in contact with each other, along curved surfaces which touch initially at a point or along a line. Examples are a railway wheel and rail, or a pair of gear wheel teeth. Professor Johnson first reviews the development of the theory of contact stresses since the problem was originally addressed by H. Hertz in 1882. Next he discusses the influence of friction and the topographical roughness of surfaces, and this is incorporated into the theory of contact mechanics. An important feature is the treatment of bodies which deform plastically or viscoelastically. In addition to stationary contact, an appreciable section of the book is concerned with bodies which are in sliding or rolling contact, or which collide.
Computational multibody system approaches have been extensively used in modeling many physical systems. Railroad Vehicle Dynamics: A Computational Approach presents computational multibody system formulations that can be used to develop computer models for complex railroad vehicle systems. Focusing on nonlinear formulations, this book explains the limitations of linearized formulations that are frequently used in analysis. Vehicle/rail interaction, a distinguishing feature of railroad vehicle systems, requires a special force or kinematic element to be included in multibody system algorithms. Using this approach, the authors address and solve geometric problems that are specific to railroad vehicle systems.
TRIBOLOGY – the study of friction, wear and lubrication – impacts almost every aspect of our daily lives. The Springer Encyclopedia of Tribology is an authoritative and comprehensive reference covering all major aspects of the science and engineering of tribology that are relevant to researchers across all engineering industries and related scientific disciplines. This is the first major reference that brings together the science, engineering and technological aspects of tribology of this breadth and scope in a single work. Developed and written by leading experts in the field, the Springer Encyclopedia of Tribology covers the fundamentals as well as advanced applications across material types, different length and time scales, and encompassing various engineering applications and technologies. Exciting new areas such as nanotribology, tribochemistry and biotribology have also been included. As a six-volume set, the Springer Encyclopedia of Tribology comprises 1630 entries written by authoritative experts in each subject area, under the guidance of an international panel of key researchers from academia, national laboratories and industry. With alphabetically-arranged entries, concept diagrams and cross-linking features, this comprehensive work provides easy access to essential information for both researchers and practicing engineers in the fields of engineering (aerospace, automotive, biomedical, chemical, electrical, and mechanical) as well as materials science, physics, and chemistry.
This book is intended for mechanicians, engineering mathematicians, and, generally for theoretically inclined mechanical engineers. It has its origin in my Master's Thesis (J 957), which I wrote under the supervision of Professor Dr. R. Timman of the Delft TH and Dr. Ir. A. D. de Pater of Netherlands Railways. I did not think that the surface of the problem had even been scratched, so I joined de Pater, who had by then become Professor in the Engineering Mechanics Lab. of the Delft TH, to write my Ph. D. Thesis on it. This thesis (1967) was weil received in railway circles, which is due more to de Pater's untiring promotion than to its merits. Still not satisfied, I feit that I needed more mathe matics, and I joined Professor Timman's group as an Associate Professor. This led to the present work. Many thanks are due to G. M. L. Gladwell, who thoroughly polished style and contents of the manuscript. Thanks are also due to my wife, herself an engineering mathematician, who read the manuscript through critically, and made many helpful comments, to G. F. M. Braat, who also read an criticised, and, in addition, drew the figures together with J. Schonewille, to Ms. A. V. M. de Wit, Ms. M. den Boef, and Ms. P. c. Wilting, who typed the manuscript, and to the Publishers, who waited patiently. Delft-Rotterdam, 17 July 1990. J. J.
This book systematically presents the theory, numerical implementation, field experiments and practical engineering applications of the ‘Vehicle–Track Coupled Dynamics’. Representing a radical departure from classic vehicle system dynamics and track dynamics, the vehicle–track coupled dynamics theory considers the vehicle and track as one interactive and integrated system coupled through wheel–rail interaction. This new theory enables a more comprehensive and accurate solution to the train–track dynamic interaction problem which is a fundamental and important research topic in railway transportation system, especially for the rapidly developed high-speed and heavy-haul railways. It has been widely applied in practical railway engineering. Dr. Wanming Zhai is a Chair Professor of Railway Engineering at Southwest Jiaotong University, where he is also chairman of the Academic Committee and Director of the Train and Track Research Institute. He is a member of the Chinese Academy of Sciences and one of the leading scientists in railway system dynamics. Professor Zhai is Editor-in-Chief of both the International Journal of Rail Transportation, published by Taylor & Francis Group, and the Journal of Modern Transportation, published by Springer. In addition, he is a trustee of the International Association for Vehicle System Dynamics, Vice President of the Chinese Society of Theoretical and Applied Mechanics, and Vice President of the Chinese Society for Vibration Engineering. /div