Download Free Mechanical Signature Analysis Book in PDF and EPUB Free Download. You can read online Mechanical Signature Analysis and write the review.

Very Good,No Highlights or Markup,all pages are intact.
Provides coverage of Motor Current Signature Analysis (MCSA) for cage induction motors This book is primarily for industrial engineers. It has 13 chapters and contains a unique data base of 50 industrial case histories on the application of MCSA to diagnose broken rotor bars or unacceptable levels of airgap eccentricity in cage induction motors with ratings from 127 kW (170 H.P.) up to 10,160 kW (13,620 H.P.). There are also unsuccessful case histories, which is another unique feature of the book. The case studies also illustrate the effects of mechanical load dynamics downstream of the motor on the interpretation of current signatures. A number of cases are presented where abnormal operation of the driven load was diagnosed. Chapter 13 presents a critical appraisal of MCSA including successes, failures and lessons learned via industrial case histories. The case histories are presented in a step by step format, with predictions and outcomes supported by current spectra and photographic evidence to confirm a correct or incorrect diagnosis The case histories are presented in detail so readers fully understand the diagnosis The authors have 108 years of combined experience in the installation, maintenance, repair, design, manufacture, operation and condition monitoring of SCIMs There are 10 questions at the end of chapters 1 to 12 and answers can be obtained via the publisher Current Signature Analysis for Condition Monitoring of Cage Induction Motors serves as a reference for professional engineers, head electricians and technicians working with induction motors. To obtain the solutions manual for this book, please send an email to [email protected]. William T. Thomson is Director and Consultant with EM Diagnostics Ltd, in Scotland. Prof. Thomson received a BSc (Hons) in Electrical Engineering in 1973 and an MSc in 1977 from the University of Strathclyde. He has published 72 papers on condition monitoring of induction motors in a variety of engineering journals such as IEEE Transactions (USA), IEE Proceedings (UK), and also at numerous International IEEE and IEE conferences. He is a senior member of the IEEE, a fellow of the IEE (IET) in the UK and a Chartered Professional Engineer registered in the UK. Ian Culbert was a Rotating Machines Specialist at Iris Power Qualitrol since April 2002 until his very untimely death on 8th September, 2015. At this company he provided consulting services to customers, assisted in product development, trained sales and field service staff and reviewed stator winding partial discharge reports. He has co-authored two books on electrical machine insulation design, evaluation, aging, testing and repair and was principal author of a number of Electric Power Research Institute reports on motor repair. Ian was a Registered Professional Engineer in the Province of Ontario, Canada and a Senior Member of IEEE.
This book identifies and classifies the causes of component wear and failure. It then turns to the analytical and investigative methods to find the causes of excessive wear and failure at the mechanical, dynamic interfaces within tested components weak links." These methods are described in a cookbook fashion. They are supported by a thorough discussion of the experiences with the application of these processes to actual components, the weak links found, the corrective actions taken, and the significant improvements in service life achieved. The great effect that properties of nonmetallic materials have on component life are included. This includes an introduction to the family tree of polymeric materials and an extensive tabulation of 120 dynamic interface configurations and designs that were investigated and rated
This book covers the diagnosis and assessment of the various faults which can occur in a three phase induction motor, namely rotor broken-bar faults, rotor-mass unbalance faults, stator winding faults, single phasing faults and crawling. Following a brief introduction, the second chapter describes the construction and operation of an induction motor, then reviews the range of known motor faults, some existing techniques for fault analysis, and some useful signal processing techniques. It includes an extensive literature survey to establish the research trends in induction motor fault analysis. Chapters three to seven describe the assessment of each of the five primary fault types. In the third chapter the rotor broken-bar fault is discussed and then two methods of diagnosis are described; (i) diagnosis of the fault through Radar analysis of stator current Concordia and (ii) diagnosis through envelope analysis of motor startup current using Hilbert and Wavelet Transforms. In chapter four, rotor-mass unbalance faults are assessed, and diagnosis of both transient and steady state stator current has been analyzed using different techniques. If both rotor broken-bar and rotor-mass unbalance faults occur simultaneously then for identification an algorithm is provided in this chapter. Chapter five considers stator winding faults and five different analysis techniques, chapter six covers diagnosis of single phasing faults, and chapter seven describes crawling and its diagnosis. Finally, chapter eight focuses on fault assessment, and presents a summary of the book together with a discussion of prospects for future research on fault diagnosis.