Download Free Measuring Contagion And Interdependence With A Bayesian Time Varying Coefficient Model Book in PDF and EPUB Free Download. You can read online Measuring Contagion And Interdependence With A Bayesian Time Varying Coefficient Model and write the review.

We propose using a Bayesian time-varying coefficient model estimated with Markov chain-Monte Carlo methods to measure contagion empirically. The proposed measure works in the joint presence of heteroskedasticity and omitted variables and does not require knowledge of the timing of the crisis. It distinguishes contagion not only from interdependence but also from structural breaks and can be used to investigate positive as well as negative contagion. The proposed measure appears to work well using both simulated and actual data.
We propose using a Bayesian time-varying coefficient model estimated with Markov chain-Monte Carlo methods to measure contagion empirically. The proposed measure works in the joint presence of heteroskedasticity and omitted variables and does not require knowledge of the timing of the crisis. It distinguishes contagion not only from interdependence but also from structural breaks and can be used to investigate positive as well as negative contagion. The proposed measure appears to work well using both simulated and actual data.
This book provides an overview of three generations of spatial econometric models: models based on cross-sectional data, static models based on spatial panels and dynamic spatial panel data models. The book not only presents different model specifications and their corresponding estimators, but also critically discusses the purposes for which these models can be used and how their results should be interpreted.
Connections among different assets, asset classes, portfolios, and the stocks of individual institutions are critical in examining financial markets. Interest in financial markets implies interest in underlying macroeconomic fundamentals. In Financial and Macroeconomic Connectedness, Frank Diebold and Kamil Yilmaz propose a simple framework for defining, measuring, and monitoring connectedness, which is central to finance and macroeconomics. These measures of connectedness are theoretically rigorous yet empirically relevant. The approach to connectedness proposed by the authors is intimately related to the familiar econometric notion of variance decomposition. The full set of variance decompositions from vector auto-regressions produces the core of the 'connectedness table.' The connectedness table makes clear how one can begin with the most disaggregated pair-wise directional connectedness measures and aggregate them in various ways to obtain total connectedness measures. The authors also show that variance decompositions define weighted, directed networks, so that these proposed connectedness measures are intimately related to key measures of connectedness used in the network literature. After describing their methods in the first part of the book, the authors proceed to characterize daily return and volatility connectedness across major asset (stock, bond, foreign exchange and commodity) markets as well as the financial institutions within the U.S. and across countries since late 1990s. These specific measures of volatility connectedness show that stock markets played a critical role in spreading the volatility shocks from the U.S. to other countries. Furthermore, while the return connectedness across stock markets increased gradually over time the volatility connectedness measures were subject to significant jumps during major crisis events. This book examines not only financial connectedness, but also real fundamental connectedness. In particular, the authors show that global business cycle connectedness is economically significant and time-varying, that the U.S. has disproportionately high connectedness to others, and that pairwise country connectedness is inversely related to bilateral trade surpluses.
Although interest in spatial regression models has surged in recent years, a comprehensive, up-to-date text on these approaches does not exist. Filling this void, Introduction to Spatial Econometrics presents a variety of regression methods used to analyze spatial data samples that violate the traditional assumption of independence between observat
This work examines theoretical issues, as well as practical developments in statistical inference related to econometric models and analysis. This work offers discussions on such areas as the function of statistics in aggregation, income inequality, poverty, health, spatial econometrics, panel and survey data, bootstrapping and time series.