Download Free Measurements Of The Cp Properties Of The Higgs Boson Couplings To Tau Leptons And Top Quarks With The Cms Experiment Book in PDF and EPUB Free Download. You can read online Measurements Of The Cp Properties Of The Higgs Boson Couplings To Tau Leptons And Top Quarks With The Cms Experiment and write the review.

During Run 2 of the Large Hadron Collider, the ATLAS experiment recorded proton-proton collision events at 13 TeV, the highest energy ever achieved in a collider. Analysis of this dataset has provided new opportunities for precision measurements of the Higgs boson, including its interaction with the top quark. The Higgs-top coupling can be directly probed through the production of a Higgs boson in association with a top-antitop quark pair (ttH). The Higgs to diphoton decay channel is among the most sensitive for ttH measurements due to the excellent diphoton mass resolution of the ATLAS detector and the clean signature of this decay. Event selection criteria were developed using novel Machine Learning techniques to target ttH events, yielding a precise measurement of the ttH cross section in the diphoton channel and a 6.3 $\sigma$ observation of the ttH process in combination with other decay channels, as well as stringent limits on CP violation in the Higgs-top coupling.
In this work, the interaction between the Higgs boson and the top quark is studied with the proton-proton collisions at 13 TeV provided by the LHC at the CMS detector at CERN (Geneva). At the LHC, these particles are produced simultaneously via the associate production of the Higgs boson with one top quark (tH process) or two top quarks (ttH process). Compared to many other possible outcomes of the proton-proton interactions, these processes are very rare, as the top quark and the Higgs boson are the heaviest elementary particles known. Hence, identifying them constitutes a significant experimental challenge. A high particle selection efficiency in the CMS detector is therefore crucial. At the core of this selection stands the Level-1 (L1) trigger system, a system that filters collision events to retain only those with potential interest for physics analysis. The selection of hadronically decaying τ leptons, expected from the Higgs boson decays, is especially demanding due to the large background arising from the QCD interactions. The first part of this thesis presents the optimization of the L1 τ algorithm in Run 2 (2016-2018) and Run 3 (2022-2024) of the LHC. It includes the development of a novel trigger concept for the High-Luminosity LHC, foreseen to start in 2027 and to deliver 5 times the current instantaneous luminosity. To this end, sophisticated algorithms based on machine learning approaches are used, facilitated by the increasingly modern technology and powerful computation of the trigger system. The second part of the work presents the search of the tH and ttH processes with the subsequent decays of the Higgs boson to pairs of τ lepton, W bosons or Z bosons, making use of the data recorded during Run 2. The presence of multiple particles in the final state, along with the low cross section of the processes, makes the search an ideal use case for multivariant discriminants that enhance the selectivity of the signals and reject the overwhelming background contributions. The discriminants presented are built using state-of-the-art machine learning techniques, able to capture the correlations amongst the processes involved, as well as the so-called Matrix Element Method (MEM), which combines the theoretical description of the processes with the detector resolution effects. The level of sophistication of the methods used, along with the unprecedented amount of collision data analyzed, result in the most stringent measurements of the tH and ttH cross sections up to date.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.
The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.
This book highlights two essential analyses of data collected during the LHCb experiment, based on the Large Hadron Collider at CERN. The first comprises the first observation and studies of matter-antimatter asymmetries in two three-body b-baryon decays, paving the way for more precise measurements of the relatively unknown decay properties of b-baryon decays. The second is an analysis of a charged B meson decay to three charged pions, where previously large matter-antimatter asymmetries were observed in a model-independent analysis. Here a model of the decay amplitude is constructed using the unitarity-conserving ‘K-matrix’ model for the scalar contributions, so as to gain an understanding of how the previously observed matter-antimatter asymmetries arise; further, the model’s construction yields the most precise and comprehensive study of this decay mode to date.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.