Download Free Measurements Of B U Decays Using The Lhcb Experiment Book in PDF and EPUB Free Download. You can read online Measurements Of B U Decays Using The Lhcb Experiment and write the review.

This book discusses the study of double charm B decays and the first observation of B0->D0D0Kst0 decay using Run I data from the LHCb experiment. It also describes in detail the upgrade for the Run III of the LHCb tracking system and the trigger and tracking strategy for the LHCb upgrade, as well as the development and performance studies of a novel standalone tracking algorithm for the scintillating fibre tracker that will be used for the LHCb upgrade. This algorithm alone allows the LHCb upgrade physics program to achieve incredibly high sensitivity to decays containing long-lived particles as final states as well as to boost the physics capabilities for the reconstruction of low momentum particles.
The Standard Model (SM) of particle physics has withstood thus far every attempt by experimentalists to show that it does not describe data. We discuss the SM in some detail, focusing on the mechanism of fermion mixing, which represents one of its most intriguing aspects. We discuss how this mechanism can be tested in b-quark decays, and how b decays can be used to extract information on physics beyond the SM. We review experimental techniques in b physics, focusing on recent results and highlighting future prospects. Particular attention is devoted to recent results from b decays into a hadron, a lepton and an anti-lepton, that show discrepancies with the SM predictions — the so-called B-physics anomalies — whose statistical significance has been increasing steadily. We discuss these experiments in a detailed manner, and also provide theoretical interpretation of these results in terms of physics beyond the SM.
This book explores how machine learning can be used to improve the efficiency of expensive fundamental science experiments. The first part introduces the Belle and Belle II experiments, providing a detailed description of the Belle to Belle II data conversion tool, currently used by many analysts. The second part covers machine learning in high-energy physics, discussing the Belle II machine learning infrastructure and selected algorithms in detail. Furthermore, it examines several machine learning techniques that can be used to control and reduce systematic uncertainties. The third part investigates the important exclusive B tagging technique, unique to physics experiments operating at the Υ resonances, and studies in-depth the novel Full Event Interpretation algorithm, which doubles the maximum tag-side efficiency of its predecessor. The fourth part presents a complete measurement of the branching fraction of the rare leptonic B decay “B→tau nu”, which is used to validate the algorithms discussed in previous parts.
This thesis, which won one of the six 2015 ATLAS Thesis Awards, concerns the study of the charmonium and bottomonium bound heavy quark bound states. The first section of the thesis describes the observation of a candidate for the chi_b(3P) bottomonium states. This represented the first observation of a new particle at the LHC and its existence was subsequently confirmed by D0 and LHCb experiments. The second part of the thesis presents measurements of the prompt and non-prompt production of the chi_c1 and chi_c2 charmonium states in proton-proton collisions. These measurements are compared to several theoretical predictions and can be used to inform the development of theoretical models of quarkonium production.
This proceedings volume is devoted to a wide variety of items, both in theory and experiment, of particle physics such as tests of the Standard Model and beyond, physics at the future accelerators, neutrino and astroparticle physics, heavy quark physics, non-perturbative QCD, quantum gravity effects and cosmology. It is important that the papers in this volume reveal the present status and new developments in the above-mentioned items on the eve of a new era that starts with the Large Hadron Collider (LHC).
During more than 10 years, from 1989 until 2000, the LEP accelerator and the four LEP experiments, ALEPH, DELPHI, L3 and OPAL, have taken data for a large amount of measurements at the frontier of particle physics. The main outcome is a thorough and successful test of the Standard Model of electroweak interactions. Mass and width of the Z and W bosons were measured precisely, as well as the Z and photon couplings to fermions and the couplings among gauge bosons. The rst part of this work will describe the most important physics results of the LEP experiments. Emphasis is put on the properties of the W boson, which was my main research eld at LEP. Especially the precise determination of its mass and its couplings to the other gauge bosons will be described. Details on physics effects like Colour Reconnection and Bose-Einstein Correlations in W-pair events shall be discussed as well. A conclusive summary of the current electroweak measurements, including low-energy results, as the pillars of possible future ndings will be given. The important contributions from Tevatron, like the measurement of the top quark and W mass, will round up the present day picture of electroweak particle physics.
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
The book is a compilation of the most important experimental results achieved during the past 60 years at CERN - from the mid-1950s to the latest discovery of the Higgs particle. Covering the results from the early accelerators at CERN to those most recent at the LHC, the contents provide an excellent review of the achievements of this outstanding laboratory. Not only presented is the impressive scientific progress achieved during the past six decades, but also demonstrated is the special way in which successful international collaboration exists at CERN.