Download Free Maximum Penalized Likelihood Estimation Book in PDF and EPUB Free Download. You can read online Maximum Penalized Likelihood Estimation and write the review.

Unique blend of asymptotic theory and small sample practice through simulation experiments and data analysis. Novel reproducing kernel Hilbert space methods for the analysis of smoothing splines and local polynomials. Leading to uniform error bounds and honest confidence bands for the mean function using smoothing splines Exhaustive exposition of algorithms, including the Kalman filter, for the computation of smoothing splines of arbitrary order.
This book deals with parametric and nonparametric density estimation from the maximum (penalized) likelihood point of view, including estimation under constraints. The focal points are existence and uniqueness of the estimators, almost sure convergence rates for the L1 error, and data-driven smoothing parameter selection methods, including their practical performance. The reader will gain insight into technical tools from probability theory and applied mathematics.
Unique blend of asymptotic theory and small sample practice through simulation experiments and data analysis. Novel reproducing kernel Hilbert space methods for the analysis of smoothing splines and local polynomials. Leading to uniform error bounds and honest confidence bands for the mean function using smoothing splines Exhaustive exposition of algorithms, including the Kalman filter, for the computation of smoothing splines of arbitrary order.
Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.
This book deals with parametric and nonparametric density estimation from the maximum (penalized) likelihood point of view, including estimation under constraints. The focal points are existence and uniqueness of the estimators, almost sure convergence rates for the L1 error, and data-driven smoothing parameter selection methods, including their practical performance. The reader will gain insight into technical tools from probability theory and applied mathematics.
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
Topics emphasized include nonparametric density estimation as an exploratory device plus the deeper models to which the exploratory analysis points, multi-dimensional data analysis, and analysis of remote sensing data, cancer progression, chaos theory, epidemiological modeling, and parallel based algorithms. New methods discussed are quick nonparametric density estimation based techniques for resampling and simulation based estimation techniques not requiring closed form solutions.