Download Free Maximum Likelihood Estimation Of The Survival Functions Of Stochastically Ordered Random Variables Book in PDF and EPUB Free Download. You can read online Maximum Likelihood Estimation Of The Survival Functions Of Stochastically Ordered Random Variables and write the review.

A bibliography on stochastic orderings. Was there a real need for it? In a time of reference databases as the MathSci or the Science Citation Index or the Social Science Citation Index the answer seems to be negative. The reason we think that this bibliog raphy might be of some use stems from the frustration that we, as workers in the field, have often experienced by finding similar results being discovered and proved over and over in different journals of different disciplines with different levels of mathematical so phistication and accuracy and most of the times without cross references. Of course it would be very unfair to blame an economist, say, for not knowing a result in mathematical physics, or vice versa, especially when the problems and the languages are so far apart that it is often difficult to recognize the analogies even after further scrutiny. We hope that collecting the references on this topic, regardless of the area of application, will be of some help, at least to pinpoint the problem. We use the term stochastic ordering in a broad sense to denote any ordering relation on a space of probability measures. Questions that can be related to the idea of stochastic orderings are as old as probability itself. Think for instance of the problem of comparing two gambles in order to decide which one is more favorable.
Stochastic orders and inequalities are being used at an accelerated rate in many diverse areas of probability and statistics. This book provides the first unified, systematic, and accessible treatment of stochasticorders, addressing the growing importance of these orders with the presentation of numerous results that illustrate their usefulness and applicability. Ten insightful chapters emphasize the applications by specialists in probability and statistics, economics, operations research, and reliability theory. Applications include multivariate variability, epidemics, comparisons of risk and risk aversion, scheduling, and systems reliability theory.
A valuable tool for anyone writing a thesis, whether it is an undergraduate, graduate, or doctoral thesis. Included is an in-depth explanation of the formulation of a thesis statement, types of thesis statements, and research techniques. Aids the writer in every step of developing, researching, composing, and submitting a thesis.
This book emphasizes the use of stochastic orders as motivational tools for developing new statistical procedures. Stochastic orders have found useful applications in many disciplines, including reliability theory, survival analysis, risk theory, finance, nonparametric methods, economics and actuarial science. Written by a statistician, this volume clarifies the connection between stochastic orders and nonparametric methods. The importance of order statistics and spacings is well recognized. Classically, they mainly focus on the case when the observations are independent and identically distributed, however, several new developments have extended the comparison of order statistics to the case of non-identically distributed or non-independent observations. In addition to giving a detailed discussion of various topics in the general area of stochastic orders, a substantial part of the book is devoted to recent research on stochastic comparisons of order statistics and spacings, including a long chapter on dependence among them. The book will be useful for graduate students and researchers in statistics, economics, actuarial science and other related disciplines. In particular, with close to 300 references, it will be a valuable resource for reliability theorists, applied probabilists and statisticians. Readers are expected to have taken a first-year graduate level course in mathematical statistics or in applied probability.
Highlighting the latest advances in nonparametric and semiparametric statistics, this book gathers selected peer-reviewed contributions presented at the 4th Conference of the International Society for Nonparametric Statistics (ISNPS), held in Salerno, Italy, on June 11-15, 2018. It covers theory, methodology, applications and computational aspects, addressing topics such as nonparametric curve estimation, regression smoothing, models for time series and more generally dependent data, varying coefficient models, symmetry testing, robust estimation, and rank-based methods for factorial design. It also discusses nonparametric and permutation solutions for several different types of data, including ordinal data, spatial data, survival data and the joint modeling of both longitudinal and time-to-event data, permutation and resampling techniques, and practical applications of nonparametric statistics. The International Society for Nonparametric Statistics is a unique global organization, and its international conferences are intended to foster the exchange of ideas and the latest advances and trends among researchers from around the world and to develop and disseminate nonparametric statistics knowledge. The ISNPS 2018 conference in Salerno was organized with the support of the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and the University of Salerno.
All articles, notes, queries, corrigenda, and obituaries appearing in the following journals during the indicated years are indexed: Annals of mathematical statistics, 1961-1969; Biometrics, 1965-1969#3; Biometrics, 1951-1969; Journal of the American Statistical Association, 1956-1969; Journal of the Royal Statistical Society, Series B, 1954-1969,#2; South African statistical journal, 1967-1969,#2; Technometrics, 1959-1969.--p.iv.