Download Free Mathematics Science In The Real World Book in PDF and EPUB Free Download. You can read online Mathematics Science In The Real World and write the review.

In this accessible and illuminating study of how the science of mathematics developed, a veteran math researcher and educator looks at the ways in which our evolutionary makeup is both a help and a hindrance to the study of math. Artstein chronicles the discovery of important mathematical connections between mathematics and the real world from ancient times to the present. The author then describes some of the contemporary applications of mathematics—in probability theory, in the study of human behavior, and in combination with computers, which give mathematics unprecedented power. The author concludes with an insightful discussion of why mathematics, for most people, is so frustrating. He argues that the rigorous logical structure of math goes against the grain of our predisposed ways of thinking as shaped by evolution, presumably because the talent needed to cope with logical mathematics gave the human race as a whole no evolutionary advantage. With this in mind, he offers ways to overcome these innate impediments in the teaching of math.
Mathematics in the Real World is a self-contained, accessible introduction to the world of mathematics for non-technical majors. With a focus on everyday applications and context, the topics in this textbook build in difficulty and are presented sequentially, starting with a brief review of sets and numbers followed by an introduction to elementary statistics, models, and graph theory. Data and identification numbers are then covered, providing the pathway to voting and finance. Each subject is covered in a concise and clear fashion through the use of real-world applications and the introduction of relevant terminology. Many sample problems – both writing exercises and multiple-choice questions – are included to help develop students’ level of understanding and to offer a variety of options to instructors. Covering six major units and outlining a one-semester course, Mathematics in the Real World is aimed at undergraduate liberal art students fulfilling the mathematics requirement in their degree program. This introductory text will be an excellent resource for such courses, and will show students where mathematics arises in their everyday lives.
This unique volume presents reviews of research in several important areas of applications of mathematical concepts to science and technology, for example applications of inverse problems and wavelets to real world systems. The book provides a comprehensive overview of current research of several outstanding scholars engaged in diverse fields such as complexity theory, vertex coupling in quantum graphs, mixing of substances by turbulence, network dynamics and architecture, processes with rate — independent hysteresis, numerical analysis of Hamilton Jacobi — Bellman equations, simulations of complex stochastic differential equations, optimal flow control, shape optimal flow control, shape optimization and aircraft designing, mathematics of brain, nanotechnology and DNA structure and mathematical models of environmental problems. The volume also contains contributory talks based on current researches of comparatively young researchers participating in the conference.
In this vibrant work, which is ideal for both teaching and learning, Apoorva Khare and Anna Lachowska explain the mathematics essential for understanding and appreciating our quantitative world. They show with examples that mathematics is a key tool in the creation and appreciation of art, music, and literature, not just science and technology. The book covers basic mathematical topics from logarithms to statistics, but the authors eschew mundane finance and probability problems. Instead, they explain how modular arithmetic helps keep our online transactions safe, how logarithms justify the twelve-tone scale commonly used in music, and how transmissions by deep space probes are similar to knights serving as messengers for their traveling prince. Ideal for coursework in introductory mathematics and requiring no knowledge of calculus, Khare and Lachowska's enlightening mathematics tour will appeal to a wide audience.
Numbers surround us. Just try to make it through a day without using any. It's impossible: telephone numbers, calendars, volume settings, shoe sizes, speed limits, weights, street numbers, microwave timers, TV channels, and the list goes on and on. The many advancements and branches of mathematics were developed through the centuries as people encountered problems and relied upon math to solve them. For instance: What timely invention was tampered with by the Caesars and almost perfected by a pope? Why did ten days vanish in September of 1752? How did Queen Victoria shorten the Sunday sermons at chapel? What important invention caused the world to be divided into time zones? What simple math problem caused the Mars Climate Orbiter to burn up in the Martian atmosphere? What common unit of measurement was originally based on the distance from the equator to the North Pole? Does water always boil at 212? Fahrenheit? What do Da Vinci's Last Supper and the Parthenon have in common? Why is a computer glitch called a "bug"? It's amazing how ten simple digits can be used in an endless number of ways to benefit man. The development of these ten digits and their many uses is the fascinating story you hold in your hands: Exploring the World of Mathematics.
An introduction to algorithms for readers with no background in advanced mathematics or computer science, emphasizing examples and real-world problems. Algorithms are what we do in order not to have to do something. Algorithms consist of instructions to carry out tasks—usually dull, repetitive ones. Starting from simple building blocks, computer algorithms enable machines to recognize and produce speech, translate texts, categorize and summarize documents, describe images, and predict the weather. A task that would take hours can be completed in virtually no time by using a few lines of code in a modern scripting program. This book offers an introduction to algorithms through the real-world problems they solve. The algorithms are presented in pseudocode and can readily be implemented in a computer language. The book presents algorithms simply and accessibly, without overwhelming readers or insulting their intelligence. Readers should be comfortable with mathematical fundamentals and have a basic understanding of how computers work; all other necessary concepts are explained in the text. After presenting background in pseudocode conventions, basic terminology, and data structures, chapters cover compression, cryptography, graphs, searching and sorting, hashing, classification, strings, and chance. Each chapter describes real problems and then presents algorithms to solve them. Examples illustrate the wide range of applications, including shortest paths as a solution to paragraph line breaks, strongest paths in elections systems, hashes for song recognition, voting power Monte Carlo methods, and entropy for machine learning. Real-World Algorithms can be used by students in disciplines from economics to applied sciences. Computer science majors can read it before using a more technical text.
Algebra is often taught in an abstract manner with little or no emphasis on what algebra is or how it can be used to solve real problems. Just as English can be translated into other languages, word problems can be "translated" into the math language of algebra and easily solved. Real World Algebra explains this process in an easy to understand format using cartoons and drawings. This makes self-learning easy for both the student and any teacher who never did quite understand algebra. Solutions included. Includes chapters on the language of algebra, geometry and algebra, proportions and algebra, physics, levers, the Pythagorean Theorem, percents and algebra, simultaneous equations, and algebra and money.--publisher's website.
"Few of us really appreciate the full power of math--the extent to which its influence is not only in every office and every home, but also in every courtroom and hospital ward. In this ... book, Kit Yates explores the true stories of life-changing events in which the application--or misapplication--of mathematics has played a critical role: patients crippled by faulty genes and entrepreneurs bankrupted by faulty algorithms; innocent victims of miscarriages of justice; and the unwitting victims of software glitches"--Publisher marketing.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.