Download Free Mathematics For General Education Book in PDF and EPUB Free Download. You can read online Mathematics For General Education and write the review.

This activities manul includes activities designed to be done in class or outside of class. These activities promote critical thinking and discussion and give students a depth of understanding and perspective on the concepts presented in the text.
Linear Methods: A General Education Course is expressly written for non-mathematical students, particularly freshmen taking a required core mathematics course. Rather than covering a hodgepodge of different topics as is typical for a core mathematics course, this text encourages students to explore one particular branch of mathematics, elementary linear algebra, in some depth. The material is presented in an accessible manner, as opposed to a traditional overly rigorous approach. While introducing students to useful topics in linear algebra, the book also includes a gentle introduction to more abstract facets of the subject. Many relevant uses of linear algebra in today’s world are illustrated, including applications involving business, economics, elementary graph theory, Markov chains, linear regression and least-squares polynomials, geometric transformations, and elementary physics. The authors have included proofs of various important elementary theorems and properties which provide readers with the reasoning behind these results. Features: Written for a general education core course in introductory mathematics Introduces elementary linear algebra concepts to non-mathematics majors Provides an informal introduction to elementary proofs involving matrices and vectors Includes useful applications from linear algebra related to business, graph theory, regression, and elementary physics Authors Bio: David Hecker is a Professor of Mathematics at Saint Joseph's University in Philadelphia. He received his Ph.D. from Rutgers University and has published several journal articles. He also co-authored several editions of Elementary Linear Algebra with Stephen Andrilli. Stephen Andrilli is a Professor in the Mathematics and Computer Science Department at La Salle University in Philadelphia. He received his Ph.D. from Rutgers University and also co-authored several editions of Elementary Linear Algebra with David Hecker.
The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training students to think logically; and because mathematics is as much part of cultural heritage as literature or music. These reasons remain valid, though open to critique, but a deeper analysis is required that recognizes the roles of mathematics in framing many aspects of contemporary society, that will connect mathematics education to the lived experiences of students, their communities, and society in general, and that acknowledges the global ethical responsibilities of mathematicians and mathematics educators. The book is organized in four sections (1) Mathematics education: For what and why? (2) Globalization and cultural diversity, (3) Mathematics, education, and society and (4) Social justice in, and through, mathematics education The chapters address fundamental issues such as the relevance of school mathematics in people's lives; creating a sense of agency for the field of mathematics education, and redefining the relationship between mathematics as discipline, mathematics as school subject and mathematics as part of people's lives.
General Mathematics: Revision and Practice is a comprehensive resource for self-study or teacher-led courses to take GCSE and Standard Grade candidates right up to A* Grade, or Scottish Credit level. This edition now includes a new chapter on investigations, practical problems and puzzles, to give the student problem-solving skills and practice ready for coursework. Key Points: · A complete course in one volume · Ease of accessibility to different maths topics · Graded questions, revision exercises and past examination questions · Ample quantity of material providing wide choice · Mathematics drawn out from a wide range of realistic everyday situations · Numerical answers provided at the back
Argues that teachers and schools should create hybrid third spaces--neither classroom nor home--in which underserved students can merge their personal worlds with those of math and science.
Active engagement is the key to learning. You want your students doing something that stimulates them to ask questions and creates a need to know. Teaching Mathematics Through Games presents a variety of classroom-tested exercises and activities that provoke the active learning and curiosity that you hope to promote. These games run the gamut from well-known favorites like SET and Settlers of Catan to original games involving simulating structural inequality in New York or playing Battleship with functions. The book contains activities suitable for a wide variety of college mathematics courses, including general education courses, math for elementary education, probability, calculus, linear algebra, history of math, and proof-based mathematics. Some chapter activities are short term, such as a drop-in lesson for a day, and some are longer, including semester-long projects. All have been tested, refined, and include extensive implementation notes.
Mathematics is traditionally seen as the most neutral of disciplines, the furthest removed from the arguments and controversy of politics and social life. However, critical mathematics challenges these assumptions and actively attacks the idea that mathematics is pure, objective, and value?neutral. It argues that history, society, and politics have shaped mathematics—not only through its applications and uses but also through molding its concepts, methods, and even mathematical truth and proof, the very means of establishing truth. Critical mathematics education also attacks the neutrality of the teaching and learning of mathematics, showing how these are value?laden activities indissolubly linked to social and political life. Instead, it argues that the values of openness, dialogicality, criticality towards received opinion, empowerment of the learner, and social/political engagement and citizenship are necessary dimensions of the teaching and learning of mathematics, if it is to contribute towards democracy and social justice. This book draws together critical theoretic contributions on mathematics and mathematics education from leading researchers in the field. Recurring themes include: The natures of mathematics and critical mathematics education, issues of epistemology and ethics; Ideology, the hegemony of mathematics, ethnomathematics, and real?life education; Capitalism, globalization, politics, social class, habitus, citizenship and equity. The book demonstrates the links between these themes and the discipline of mathematics, and its critical teaching and learning. The outcome is a groundbreaking collection unified by a shared concern with critical perspectives of mathematics and education, and of the ways they impact on practice.
This text serves as a concise introduction to the ocean of information collectively known as “Engineering Mathematics.” Admittedly, compiling everything into a short book that is useful to any audience is an impossible task; therefore, we picked a few main ideas holding up the mathematics within the engineering curriculum instead of stuffing all of the details into such a small package. This text addresses conceptual understanding as often as possible by providing an intuitive basis for formalized study within engineering/mathematics. Whether you are a math or science instructor tasked to teach an engineering class, a high school student looking into engineering, or an engineering student already, we hope you are able to walk away from this text with tangible outcomes—maybe even a refined perspective on the subject.