Download Free Mathematics As A Cultural System Book in PDF and EPUB Free Download. You can read online Mathematics As A Cultural System and write the review.

Mathematics as a Cultural System discusses the relationship between mathematics and culture. The book is comprised of eight chapters discussing topics that support the concept of mathematics as a cultural system. Chapter I deals with the nature of culture and cultural systems, while Chapter 2 provides examples of cultural patterns observable in the evolution of mechanics. Chapter III treats historical episodes as a laboratory for the illustration of patterns and forces that have been operative in cultural change. Chapter IV covers hereditary stress, and Chapter V discusses consolidation as a force and process. Chapter VI talks about the singularities in the evolution of mechanics, while Chapter 7 deals with the laws governing the evolution of mathematics. Chapter VIII tackles the role and future of mathematics. The book will be of great interest to readers who are curious about how mathematics relates to culture.
INTRODUCTION TO CULTURAL MATHEMATICS Challenges readers to think creatively about mathematics and ponder its role in their own daily lives Cultural mathematics, or ethnomathematics as it is also known, studies the relationship between mathematics and culture—with the ultimate goal of contributing to an appreciation of the connection between the two. Introduction to Cultural Mathematics: With Case Studies in the Otomies and Incas integrates both theoretical and applied aspects of the topic, promotes discussions on the development of mathematical concepts, and provides a comprehensive reference for teaching and learning about multicultural mathematical practices. This illuminating book provides a nontraditional, evidence-based approach to mathematics that promotes diversity and respect for cultural heritages. Part One covers such major concepts as cultural aspects of mathematics, numeration and number symbols, kinship relations, art and decoration, games, divination, and calendars. Part Two takes those concepts and applies them to fascinating case studies of both the Otomies of Central Mexico and the Incas of South America. Throughout the book, numerous illustrations, examples, and motivational questions promote an interactive understanding of the topic. Each chapter begins with questions that encourage a cooperative, inquiry-based approach to learning and concludes with a series of exercises that allow readers to test their understanding of the presented material. Introduction to Cultural Mathematics is an ideal book for courses on cultural mathematics, the history of mathematics, and cultural studies. The book is also a valuable resource and reference for anyone interested in the connections between mathematics, culture, anthropology, and history.
Mathematics Across Cultures: A History of Non-Western Mathematics consists of essays dealing with the mathematical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Inca, Egyptian, and African mathematics, among others, the book includes essays on Rationality, Logic and Mathematics, and the transfer of knowledge from East to West. The essays address the connections between science and culture and relate the mathematical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.
Mathematics is in the unenviable position of being simultaneously one of the most important school subjects for today's children to study and one of the least well understood. Its reputation is awe-inspiring. Everybody knows how important it is and everybody knows that they have to study it. But few people feel comfortable with it; so much so that it is socially quite acceptable in many countries to confess ignorance about it, to brag about one's incompe tence at doing it, and even to claim that one is mathophobic! So are teachers around the world being apparently legal sadists by inflicting mental pain on their charges? Or is it that their pupils are all masochists, enjoying the thrill of self-inflicted mental torture? More seriously, do we really know what the reasons are for the mathematical activity which goes on in schools? Do we really have confidence in our criteria for judging what's important and what isn't? Do we really know what we should be doing? These basic questions become even more important when considered in the context of two growing problem areas. The first is a concern felt in many countries about the direction which mathematics education should take in the face of the increasing presence of computers and calculator-related technol ogy in society.
Does two and two equal four? Ask someone and they should answer yes. An equation such as this seems the very definition of certainty, but is it? In this book, Helen Verran addresses precisely that question.
This survey on the modernity of ethnomathematics addresses numerous themes related to both ethnomathematics and mathematics education. It offers a broader view of mathematics, including ideas, procedures, concepts, processes, methods, and practices rooted in distinct cultural environments. In addition, by reflecting on the social and political dimensions of ethnomathematics, another important aspect of this research program is the development of innovative approaches for a dynamic and glocalized society. Ethnomathematics recognizes that members of different cultures develop unique mathematical techniques, methods, and explanations that allow for an alternative understanding and transformation of societal norms. The theoretical basis of ethnomathematics offers a valid alternative to traditional studies of history, philosophy, cognition, and pedagogical aspects of mathematics. The current agenda for ethnomathematics is to continue an ongoing, progressive trajectory that contributes to the achievement of social justice, peace, and dignity for all. The debates outlined in this book share a few of the key ideas that provide for a clearer understanding of the field of ethnomathematics and its current state of the art by discussing its pedagogical actions, its contributions for teacher education, and its role in mathematics education.
This book gives a remarkably fine account of the influences mathematics has exerted on the development of philosophy, the physical sciences, religion, and the arts in Western life.
This book addresses numerous issues related to ethnomathematics and diverse approaches to it in the context of mathematics education. To help readers better understand the development of ethnomathematics, it discusses its objectives and assumptions with regard to promoting an ethics of respect, solidarity, and cooperation across and for all cultures. In turn, the book addresses a range of aspects including pedagogical action, culturally relevant pedagogy, innovative approaches to ethnomathematics, and the role of ethnomathematics in mathematics education. Ethnomathematics offers educators a valuable framework for transforming mathematics so that it can more actively contribute to realizing the dream of a just and humane society. As such, its primary goal is to forge mathematics into a powerful tool to help people create a society characterized by dignity for all, and in which iniquity, arrogance, violence, and bigotry have no place.
Is mathematics a discovery or an invention? Do numbers truly exist? What sort of reality do formulas describe? The complexity of mathematics - its abstract rules and obscure symbols - can seem very distant from the everyday. There are those things that are real and present, it is supposed, and then there are mathematical concepts: creations of our mind, mysterious tools for those unengaged with the world. Yet, from its most remote history and deepest purpose, mathematics has served not just as a way to understand and order, but also as a foundation for the reality it describes. In this elegant book, mathematician and philosopher Paolo Zellini offers a brief cultural and intellectual history of mathematics, ranging widely from the paradoxes of ancient Greece to the sacred altars of India, from Mesopotamian calculus to our own contemporary obsession with algorithms. Masterful and illuminating, The Mathematics of the Gods and the Algorithms of Men transforms our understanding of mathematical thinking, showing that it is inextricably linked with the philosophical and the religious as well as the mundane - and, indeed, with our own very human experience of the universe.
Mathematics Elsewhere is a fascinating and important contribution to a global view of mathematics. Presenting mathematical ideas of peoples from a variety of small-scale and traditional cultures, it humanizes our view of mathematics and expands our conception of what is mathematical. Through engaging examples of how particular societies structure time, reach decisions about the future, make models and maps, systematize relationships, and create intriguing figures, Marcia Ascher demonstrates that traditional cultures have mathematical ideas that are far more substantial and sophisticated than is generally acknowledged. Malagasy divination rituals, for example, rely on complex algebraic algorithms. And some cultures use calendars far more abstract and elegant than our own. Ascher also shows that certain concepts assumed to be universal--that time is a single progression, for instance, or that equality is a static relationship--are not. The Basque notion of equivalence, for example, is a dynamic and temporal one not adequately captured by the familiar equal sign. Other ideas taken to be the exclusive province of professionally trained Western mathematicians are, in fact, shared by people in many societies. The ideas discussed come from geographically varied cultures, including the Borana and Malagasy of Africa, the Tongans and Marshall Islanders of Oceania, the Tamil of South India, the Basques of Western Europe, and the Balinese and Kodi of Indonesia. This book belongs on the shelves of mathematicians, math students, and math educators, and in the hands of anyone interested in traditional societies or how people think. Illustrating how mathematical ideas play a vital role in diverse human endeavors from navigation to social interaction to religion, it offers--through the vehicle of mathematics--unique cultural encounters to any reader.