Download Free Mathematics And Metaphilosophy Book in PDF and EPUB Free Download. You can read online Mathematics And Metaphilosophy and write the review.

This Element discusses the problem of mathematical knowledge, and its broader philosophical ramifications. It argues that the challenge to explain the (defeasible) justification of our mathematical beliefs ('the justificatory challenge'), arises insofar as disagreement over axioms bottoms out in disagreement over intuitions. And it argues that the challenge to explain their reliability ('the reliability challenge'), arises to the extent that we could have easily had different beliefs. The Element shows that mathematical facts are not, in general, empirically accessible, contra Quine, and that they cannot be dispensed with, contra Field. However, it argues that they might be so plentiful that our knowledge of them is unmysterious. The Element concludes with a complementary 'pluralism' about modality, logic and normative theory, highlighting its surprising implications. Metaphysically, pluralism engenders a kind of perspectivalism and indeterminacy. Methodologically, it vindicates Carnap's pragmatism, transposed to the key of realism.
To what extent are the subjects of our thoughts and talk real? This is the question of realism. In this book, Justin Clarke-Doane explores arguments for and against moral realism and mathematical realism, how they interact, and what they can tell us about areas of philosophical interest more generally. He argues that, contrary to widespread belief, our mathematical beliefs have no better claim to being self-evident or provable than our moral beliefs. Nor do our mathematical beliefs have better claim to being empirically justified than our moral beliefs. It is also incorrect that reflection on the genealogy of our moral beliefs establishes a lack of parity between the cases. In general, if one is a moral antirealist on the basis of epistemological considerations, then one ought to be a mathematical antirealist as well. And, yet, Clarke-Doane shows that moral realism and mathematical realism do not stand or fall together — and for a surprising reason. Moral questions, insofar as they are practical, are objective in a sense that mathematical questions are not, and the sense in which they are objective can only be explained by assuming practical anti-realism. One upshot of the discussion is that the concepts of realism and objectivity, which are widely identified, are actually in tension. Another is that the objective questions in the neighborhood of factual areas like logic, modality, grounding, and nature are practical questions too. Practical philosophy should, therefore, take center stage.
Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.
For Wittgenstein mathematics is a human activity characterizing ways of seeing conceptual possibilities and empirical situations, proof and logical methods central to its progress. Sentences exhibit differing 'aspects', or dimensions of meaning, projecting mathematical 'realities'. Mathematics is an activity of constructing standpoints on equalities and differences of these. Wittgenstein's Later Philosophy of Mathematics (1934–1951) grew from his Early (1912–1921) and Middle (1929–33) philosophies, a dialectical path reconstructed here partly as a response to the limitative results of Gödel and Turing.
The definitive mission of metaphilosophy is to facilitate an understanding of how philosophy works—the aim of the enterprise, the instrumental and procedural resources for its work, and the prospect of its success. Nicholas Rescher unites two facets of metaphilosophy to show that historical perspective and forward-thinking normative, or systematic, metaphilosophy cannot be independent of one another. The descriptive, or historical, metaphilosophy provides an account of what has been thought regarding the conduct of philosophical inquiry, and the prescriptive, or normative, metaphilosophy which deliberates about what is to be thought regarding the conduct of philosophizing. Rescher argues that metaphilosophy forms a part of philosophy itself. This is a unique feature of the discipline since the philosophy of biology is not a part of biology and the philosophy of mathematics is not a part of mathematics. Ultimately, the salient features of philosophizing in general—including the inherently controversial and discordant nature of philosophical doctrines—are also bound to afflict metaphilosophy. Thus, only by a careful analysis of the central issues can a plausible view of the enterprise be developed. Metaphilosophy: Philosophy in Philosophical Perspective challenges the static, compartmentalized view of metaphilosophy, providing insight for scholars and students of all areas of philosophy.
Mary Leng offers a defense of mathematical fictionalism, according to which we have no reason to believe that there are any mathematical objects. Perhaps the most pressing challenge to mathematical fictionalism is the indispensability argument for the truth of our mathematical theories (and therefore for the existence of the mathematical objects posited by those theories). According to this argument, if we have reason to believe anything, we have reason to believe that the claims of our best empirical theories are (at least approximately) true. But since claims whose truth would require the existence of mathematical objects are indispensable in formulating our best empirical theories, it follows that we have good reason to believe in the mathematical objects posited by those mathematical theories used in empirical science, and therefore to believe that the mathematical theories utilized in empirical science are true. Previous responses to the indispensability argument have focussed on arguing that mathematical assumptions can be dispensed with in formulating our empirical theories. Leng, by contrast, offers an account of the role of mathematics in empirical science according to which the successful use of mathematics in formulating our empirical theories need not rely on the truth of the mathematics utilized.
The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
A stimulating intellectual history of Ptolemy's philosophy and his conception of a world in which mathematics reigns supreme The Greco-Roman mathematician Claudius Ptolemy is one of the most significant figures in the history of science. He is remembered today for his astronomy, but his philosophy is almost entirely lost to history. This groundbreaking book is the first to reconstruct Ptolemy’s general philosophical system—including his metaphysics, epistemology, and ethics—and to explore its relationship to astronomy, harmonics, element theory, astrology, cosmology, psychology, and theology. In this stimulating intellectual history, Jacqueline Feke uncovers references to a complex and sophisticated philosophical agenda scattered among Ptolemy’s technical studies in the physical and mathematical sciences. She shows how he developed a philosophy that was radical and even subversive, appropriating ideas and turning them against the very philosophers from whom he drew influence. Feke reveals how Ptolemy’s unique system is at once a critique of prevailing philosophical trends and a conception of the world in which mathematics reigns supreme. A compelling work of scholarship, Ptolemy’s Philosophy demonstrates how Ptolemy situated mathematics at the very foundation of all philosophy—theoretical and practical—and advanced the mathematical way of life as the true path to human perfection.
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.