Download Free Mathematical Works Book in PDF and EPUB Free Download. You can read online Mathematical Works and write the review.

For most mathematicians and many mathematical physicists the name Erich Kähler is strongly tied to important geometric notions such as Kähler metrics, Kähler manifolds and Kähler groups. They all go back to a paper of 14 pages written in 1932. This, however, is just a small part of Kähler's many outstanding achievements which cover an unusually wide area: From celestial mechanics he got into complex function theory, differential equations, analytic and complex geometry with differential forms, and then into his main topic, i.e. arithmetic geometry where he constructed a system of notions which is a precursor and, in large parts, equivalent to the now used system of Grothendieck and Dieudonné. His principal interest was in finding the unity in the variety of mathematical themes and establishing thus mathematics as a universal language. In this volume Kähler's mathematical papers are collected following a "Tribute to Herrn Erich Kähler" by S. S. Chern, an overview of Kähler's life data by A. Bohm and R. Berndt, and a Survey of his Mathematical Work by the editors. There are also comments and reports on the developments of the main topics of Kähler's work, starting by W. Neumann's paper on the topology of hypersurface singularities, J.-P. Bourguignon's report on Kähler geometry and, among others by Berndt, Bost, Deitmar, Ekeland, Kunz and Krieg, up to A. Nicolai's essay "Supersymmetry, Kähler geometry and Beyond". As Kähler's interest went beyond the realm of mathematics and mathematical physics, any picture of his work would be incomplete without touching his work reaching into other regions. So a short appendix reproduces three of his articles concerning his vision of mathematics as a universal Theme together with an essay by K. Maurin giving an "Approach to the philosophy of Erich Kähler".
If you ask students, "Why does that work?" do they know what you're asking and do you know what to listen for in their responses? Do you have images of what mathematical argument looks like in the elementary grades and how to help students learn to engage in this important practice? Do you have so much content to cover that finding time for this kind of work is difficult? But Why Does It Work? offers a simple, efficient teaching model focused on mathematical argument for developing the ability of students to justify their thinking and engage with the reasoning of others. Designed for individuals as well as study groups, this book includes access to classroom-ready instructional sequences, each built on a model supporting students in: noticing relationships across sets of problems, equations, or expressions articulating a claim about what they notice investigating their claim through representations such as manipulatives, diagrams, or story contexts using their representations to demonstrate why a claim must be true or not extending their thinking from one operation to another. Establishing a classroom culture where students gain confidence in their own mathematical voice and learn to value the contributions of their peers is a critical part of this work. The authors tell us, "If the idea underlying a student's reasoning is not made explicit, the opportunity for all students to engage in such thinking is lost." As students become a true community of mathematicians, they heighten each other's understanding by investigating questions, conjectures, and examples together. Enhanced with extensive video showing the instructional sequences in action-along with guiding focus questions and math investigations-But Why Does It Work? is a flexible approach that will help students confidently articulate and defend their reasoning, and share their deep thinking with others.
We hear all the time how American children are falling behind their global peers in various basic subjects, but particularly in math. Is it our fear of math that constrains us? Or our inability to understand math’s place in relation to our everyday lives? How can we help our children better understand the basics of arithmetic if we’re not really sure we understand them ourselves? Here, G. Arnell Williams helps parents and teachers explore the world of math that their elementary school children are learning. Taking readers on a tour of the history of arithmetic, and its growth into the subject we know it to be today, Williams explores the beauty and relevance of mathematics by focusing on the great conceptual depth and genius already inherent in the elementary mathematics familiar to us all, and by connecting it to other well-known areas such as language and the conceptual aspects of everyday life. The result is a book that will help you to better explain mathematics to your children. For those already well versed in these areas, the book offers a tour of the great conceptual and historical facts and assumptions that most simply take for granted. If you are someone who has always struggled with mathematics either because you couldn’t do it or because you never really understood why the rules are the way they are, if you were irritated with the way it was taught to you with the emphasis being only on learning the rules and “recipes” by rote as opposed to obtaining a good conceptual understanding, then How Math Works is for you!
"Burdick's exhaustive research has unearthed numerous examples of books not previously cataloged as mathematical. While it was thought that no mathematical writings in English were printed in the Americas before 1703, Burdick gives scholars one of their first chances to discover Jacob Taylor's 1697 Tenebrae, a treatise on solving triangles and other figures using basic trigonometry. He also goes beyond the English language to discuss works in Spanish and Latin, such as Alonso de la Vera Cruz's 1554 logic text, the Recognitio Summularum; a book on astrology by Enrico Martinez; books on the nature of comets by Carlos de Siguenza y Gongora and Eusebio Francisco Kino; and a 1676 almanac by Feliciana Ruiz, the first woman to produce a mathematical work in the Americas.".
Bernard Bolzano (1781-1848, Prague) was an outstanding thinker and reformer, far ahead of his times in many areas, including philosophy, ethics, politics, logic, theology and physics, and mathematics. Aimed at historians of mathematics, philosophy, ethics and logic, this volume contains the first English translations of some of his most significant mathematical writings, which contain the details of many celebrated insights and anticipations: clear topological definitions of various geometric extensions, an effective statement and use of the Cauchy convergence before it appears in Cauchy's work, remarkable results on measurable numbers (a version of real numbers), on functions (the construction of a continuous, non-differentiable function around 1830) and on infinite collections.
Leon Battista Alberti was an outstanding polymath of the fifteenth century, alongside Piero della Francesca and before Leonardo da Vinci. While his contributions to architecture and the visual arts are well known and available in good English editions, and much of his literary and social writings are also available in English, his mathematical works are not well represented in readily available, accessible English editions have remained accessible only to specialists. The four treatises included here – Ludi matematici, De Componendis Cifris, Elementi di pittura and De lunularum quadratura – are extremely valuable in rounding out the portrait of this multitalented thinker. The treatises are presented in modern English translations, with commentary that is intended to make evident the depths of Alberti’s knowledge as well as address the treatises’ mathematical, historical and cultural context, their classical Greek roots, and their relationship to later works by Renaissance thinkers.
Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.
Lewis Carroll's 'Selected Mathematical Works' is a comprehensive collection of three of his lesser-known but influential pieces: 'Symbolic Logic,' 'The Game of Logic,' and 'Feeding the Mind.' Carroll's work delves into the world of mathematics through the lens of logic and reasoning, offering readers a unique perspective on mathematical concepts. With his playful and imaginative literary style, Carroll engages readers in complex mathematical ideas, making them accessible to a wider audience. These works are a testament to Carroll's diverse talents as a scholar and writer, showcasing his ability to blend literature and mathematics seamlessly. In the context of the Victorian era, Carroll's mathematical works were ahead of their time, challenging traditional academic perspectives and paving the way for future explorations in logic and symbolism. Lewis Carroll, known for his iconic work 'Alice's Adventures in Wonderland,' was also a mathematician and logician, which undoubtedly influenced his writings on mathematics. His passion for both literature and mathematics is evident in 'Selected Mathematical Works,' making it a valuable contribution to the intersection of these two disciplines. I highly recommend this book to readers interested in exploring the fascinating connections between mathematics, logic, and literature, as well as those intrigued by Carroll's multifaceted talents and intellectual pursuits.