Download Free Mathematical Theory Of Statistics Book in PDF and EPUB Free Download. You can read online Mathematical Theory Of Statistics and write the review.

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Mathematical Theory of Probability and Statistics focuses on the contributions and influence of Richard von Mises on the processes, methodologies, and approaches involved in the mathematical theory of probability and statistics. The publication first elaborates on fundamentals, general label space, and basic properties of distributions. Discussions focus on Gaussian distribution, Poisson distribution, mean value variance and other moments, non-countable label space, basic assumptions, operations, and distribution function. The text then ponders on examples of combined operations and summation of chance variables characteristic function. The book takes a look at the asymptotic distribution of the sum of chance variables and probability inference. Topics include inference from a finite number of observations, law of large numbers, asymptotic distributions, limit distribution of the sum of independent discrete random variables, probability of the sum of rare events, and probability density. The text also focuses on the introduction to the theory of statistical functions and multivariate statistics. The publication is a dependable source of information for researchers interested in the mathematical theory of probability and statistics
Mathematical Theory of Bayesian Statistics introduces the mathematical foundation of Bayesian inference which is well-known to be more accurate in many real-world problems than the maximum likelihood method. Recent research has uncovered several mathematical laws in Bayesian statistics, by which both the generalization loss and the marginal likelihood are estimated even if the posterior distribution cannot be approximated by any normal distribution. Features Explains Bayesian inference not subjectively but objectively. Provides a mathematical framework for conventional Bayesian theorems. Introduces and proves new theorems. Cross validation and information criteria of Bayesian statistics are studied from the mathematical point of view. Illustrates applications to several statistical problems, for example, model selection, hyperparameter optimization, and hypothesis tests. This book provides basic introductions for students, researchers, and users of Bayesian statistics, as well as applied mathematicians. Author Sumio Watanabe is a professor of Department of Mathematical and Computing Science at Tokyo Institute of Technology. He studies the relationship between algebraic geometry and mathematical statistics.
Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
Mathematical Statistics: A Decision Theoretic Approach presents an investigation of the extent to which problems of mathematical statistics may be treated by decision theory approach. This book deals with statistical theory that could be justified from a decision-theoretic viewpoint. Organized into seven chapters, this book begins with an overview of the elements of decision theory that are similar to those of the theory of games. This text then examines the main theorems of decision theory that involve two more notions, namely the admissibility of a decision rule and the completeness of a class of decision rules. Other chapters consider the development of theorems in decision theory that are valid in general situations. This book discusses as well the invariance principle that involves groups of transformations over the three spaces around which decision theory is built. The final chapter deals with sequential decision problems. This book is a valuable resource for first-year graduate students in mathematics.
This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. This new edition has been revised and updated and in this fourth printing, errors have been ironed out. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Subsequent chapters contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results.
The aim of this graduate textbook is to provide a comprehensive advanced course in the theory of statistics covering those topics in estimation, testing, and large sample theory which a graduate student might typically need to learn as preparation for work on a Ph.D. An important strength of this book is that it provides a mathematically rigorous and even-handed account of both Classical and Bayesian inference in order to give readers a broad perspective. For example, the "uniformly most powerful" approach to testing is contrasted with available decision-theoretic approaches.
Evaluating statistical procedures through decision and game theory, as first proposed by Neyman and Pearson and extended by Wald, is the goal of this problem-oriented text in mathematical statistics. First-year graduate students in statistics and other students with a background in statistical theory and advanced calculus will find a rigorous, thorough presentation of statistical decision theory treated as a special case of game theory. The work of Borel, von Neumann, and Morgenstern in game theory, of prime importance to decision theory, is covered in its relevant aspects: reduction of games to normal forms, the minimax theorem, and the utility theorem. With this introduction, Blackwell and Professor Girshick look at: Values and Optimal Strategies in Games; General Structure of Statistical Games; Utility and Principles of Choice; Classes of Optimal Strategies; Fixed Sample-Size Games with Finite Ω and with Finite A; Sufficient Statistics and the Invariance Principle; Sequential Games; Bayes and Minimax Sequential Procedures; Estimation; and Comparison of Experiments. A few topics not directly applicable to statistics, such as perfect information theory, are also discussed. Prerequisites for full understanding of the procedures in this book include knowledge of elementary analysis, and some familiarity with matrices, determinants, and linear dependence. For purposes of formal development, only discrete distributions are used, though continuous distributions are employed as illustrations. The number and variety of problems presented will be welcomed by all students, computer experts, and others using statistics and game theory. This comprehensive and sophisticated introduction remains one of the strongest and most useful approaches to a field which today touches areas as diverse as gambling and particle physics.
iPositive Give a man a fish, he eats for a day, but if you teach him to fish, you feed him for life. Such is the approach of iPositive. One day at the gym doesnt make a person fit for life; its a consistent dedication to getting the body in shape that eventually yields results. The lessons in iPositive work in much the same way: They challenge the reader to work to keep the mind in shape. The book is a powerful guide to personal happiness through positivity. Its concepts provide empowerment to overcome self-doubt, disbelief and inferiority complexes in order to transcend the negativity in life. iPositive is geared toward helping individuals become more focused on the things they most want in life, like happiness, love and success, or banish anchors that may be weighting them down, like stress, smoking or excess weight. The book gives readers the practical means to become more focused on those things they want in life, and serves as an inspirational manual for a life of fulfillment, and strength in body, mind and spirit.
Explores mathematical statistics in its entirety—from the fundamentals to modern methods This book introduces readers to point estimation, confidence intervals, and statistical tests. Based on the general theory of linear models, it provides an in-depth overview of the following: analysis of variance (ANOVA) for models with fixed, random, and mixed effects; regression analysis is also first presented for linear models with fixed, random, and mixed effects before being expanded to nonlinear models; statistical multi-decision problems like statistical selection procedures (Bechhofer and Gupta) and sequential tests; and design of experiments from a mathematical-statistical point of view. Most analysis methods have been supplemented by formulae for minimal sample sizes. The chapters also contain exercises with hints for solutions. Translated from the successful German text, Mathematical Statistics requires knowledge of probability theory (combinatorics, probability distributions, functions and sequences of random variables), which is typically taught in the earlier semesters of scientific and mathematical study courses. It teaches readers all about statistical analysis and covers the design of experiments. The book also describes optimal allocation in the chapters on regression analysis. Additionally, it features a chapter devoted solely to experimental designs. Classroom-tested with exercises included Practice-oriented (taken from day-to-day statistical work of the authors) Includes further studies including design of experiments and sample sizing Presents and uses IBM SPSS Statistics 24 for practical calculations of data Mathematical Statistics is a recommended text for advanced students and practitioners of math, probability, and statistics.