Download Free Mathematical Stories I Graphs Games And Proofs Book in PDF and EPUB Free Download. You can read online Mathematical Stories I Graphs Games And Proofs and write the review.

With the help of tried and tested, carefully elaborated learning units, the authors convey fundamental mathematical techniques in this essential, which are important far beyond primary school. In the present volume I, path problems and word puzzles are modeled and solved using undirected and directed graphs. Simple math games are systematically analyzed and the optimal strategies are determined. Students learn to gradually reduce difficult problems to simpler ones and to provide evidence in different contexts. The tasks encourage mathematical thinking, imagination and creativity. The detailed sample solutions are designed for non-mathematicians. This book is a translation of the original German 1st edition Mathematische Geschichten I – Graphen, Spiele und Beweise by Susanne Schindler-Tschirner and Werner Schindler, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Graph Theory: An Introduction to Proofs, Algorithms, and Applications Graph theory is the study of interactions, conflicts, and connections. The relationship between collections of discrete objects can inform us about the overall network in which they reside, and graph theory can provide an avenue for analysis. This text, for the first undergraduate course, will explore major topics in graph theory from both a theoretical and applied viewpoint. Topics will progress from understanding basic terminology, to addressing computational questions, and finally ending with broad theoretical results. Examples and exercises will guide the reader through this progression, with particular care in strengthening proof techniques and written mathematical explanations. Current applications and exploratory exercises are provided to further the reader’s mathematical reasoning and understanding of the relevance of graph theory to the modern world. Features The first chapter introduces graph terminology, mathematical modeling using graphs, and a review of proof techniques featured throughout the book The second chapter investigates three major route problems: eulerian circuits, hamiltonian cycles, and shortest paths. The third chapter focuses entirely on trees – terminology, applications, and theory. Four additional chapters focus around a major graph concept: connectivity, matching, coloring, and planarity. Each chapter brings in a modern application or approach. Hints and Solutions to selected exercises provided at the back of the book. Author Karin R. Saoub is an Associate Professor of Mathematics at Roanoke College in Salem, Virginia. She earned her PhD in mathematics from Arizona State University and BA from Wellesley College. Her research focuses on graph coloring and on-line algorithms applied to tolerance graphs. She is also the author of A Tour Through Graph Theory, published by CRC Press.
With the help of tried and tested, carefully elaborated learning units, the authors convey fundamental mathematical techniques in this essential, which are important far beyond primary school. In the present volume I, path problems and word puzzles are modeled and solved using undirected and directed graphs. Simple math games are systematically analyzed and the optimal strategies are determined. Students learn to gradually reduce difficult problems to simpler ones and to provide evidence in different contexts. The tasks encourage mathematical thinking, imagination and creativity. The detailed sample solutions are designed for non-mathematicians. This book is a translation of the original German 1st edition Mathematische Geschichten I - Graphen, Spiele und Beweise by Susanne Schindler-Tschirner and Werner Schindler, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors. The content Mathematical techniques and tasks Detailed sample solutions The target groups Leaders of study groups as well as support courses for mathematically gifted students in grades 3 and 4, teachers who practice differentiated mathematics lessons Committed parents for extracurricular support The authors Susanne Schindler-Tschirner is a philologist and after studying to become a teacher, she was a project manager at a science publisher. She works in the field of student development and is the author of didactic-oriented publications. Werner Schindler has a PhD in mathematics. He is head of section at the Federal Office for Information Security (BSI) and an adjunct professor in the mathematics department at TU Darmstadt.
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Written by two prominent figures in the field, this comprehensive text provides a remarkably student-friendly approach. Its sound yet accessible treatment emphasizes the history of graph theory and offers unique examples and lucid proofs. 2004 edition.
Stimulating and accessible, this undergraduate-level text covers basic graph theory, colorings of graphs, circuits and cycles, labeling graphs, drawings of graphs, measurements of closeness to planarity, graphs on surfaces, and applications and algorithms. 1994 edition.
Wow! This is a powerful book that addresses a long-standing elephant in the mathematics room. Many people learning math ask ``Why is math so hard for me while everyone else understands it?'' and ``Am I good enough to succeed in math?'' In answering these questions the book shares personal stories from many now-accomplished mathematicians affirming that ``You are not alone; math is hard for everyone'' and ``Yes; you are good enough.'' Along the way the book addresses other issues such as biases and prejudices that mathematicians encounter, and it provides inspiration and emotional support for mathematicians ranging from the experienced professor to the struggling mathematics student. --Michael Dorff, MAA President This book is a remarkable collection of personal reflections on what it means to be, and to become, a mathematician. Each story reveals a unique and refreshing understanding of the barriers erected by our cultural focus on ``math is hard.'' Indeed, mathematics is hard, and so are many other things--as Stephen Kennedy points out in his cogent introduction. This collection of essays offers inspiration to students of mathematics and to mathematicians at every career stage. --Jill Pipher, AMS President This book is published in cooperation with the Mathematical Association of America.
Using field-tested, carefully crafted units of study, the authors in this essential teach fundamental mathematical techniques that are relevant well beyond the elementary school years. In this Volume II, the Gaussian summation formula and a recursion formula are derived and applied. Tasks on divisibility, prime factors and divisors follow. For calculating with remainders, the modulo calculation is introduced and applied. Students learn to perform proofs in a variety of contexts. As in Volume I, "Graphs, Games, and Proofs," the tasks encourage mathematical thinking skills, imagination, and creativity. The detailed sample solutions are designed for non-mathematicians. This book is a translation of the original German 1st edition Mathematische Geschichten II – Rekursion, Teilbarkeit und Beweise by Susanne Schindler-Tschirner and Werner Schindler, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
A hilarious reeducation in mathematics-full of joy, jokes, and stick figures-that sheds light on the countless practical and wonderful ways that math structures and shapes our world. In Math With Bad Drawings, Ben Orlin reveals to us what math actually is; its myriad uses, its strange symbols, and the wild leaps of logic and faith that define the usually impenetrable work of the mathematician. Truth and knowledge come in multiple forms: colorful drawings, encouraging jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone. Orlin shows us how to think like a mathematician by teaching us a brand-new game of tic-tac-toe, how to understand an economic crises by rolling a pair of dice, and the mathematical headache that ensues when attempting to build a spherical Death Star. Every discussion in the book is illustrated with Orlin's trademark "bad drawings," which convey his message and insights with perfect pitch and clarity. With 24 chapters covering topics from the electoral college to human genetics to the reasons not to trust statistics, Math with Bad Drawings is a life-changing book for the math-estranged and math-enamored alike.