Download Free Mathematical Perspectives Book in PDF and EPUB Free Download. You can read online Mathematical Perspectives and write the review.

A celebration of the state of mathematics at the end of the millennium. Produced under the auspices of the International Mathematical Union (IMU), the book was born as part of the activities of World Mathematical Year 2000. It consists of 28 articles written by influential mathematicians.
An undergraduate textbook devoted exclusively to relationships between mathematics and art, Viewpoints is ideally suited for math-for-liberal-arts courses and mathematics courses for fine arts majors. The textbook contains a wide variety of classroom-tested activities and problems, a series of essays by contemporary artists written especially for the book, and a plethora of pedagogical and learning opportunities for instructors and students. Viewpoints focuses on two mathematical areas: perspective related to drawing man-made forms and fractal geometry related to drawing natural forms. Investigating facets of the three-dimensional world in order to understand mathematical concepts behind the art, the textbook explores art topics including comic, anamorphic, and classical art, as well as photography, while presenting such mathematical ideas as proportion, ratio, self-similarity, exponents, and logarithms. Straightforward problems and rewarding solutions empower students to make accurate, sophisticated drawings. Personal essays and short biographies by contemporary artists are interspersed between chapters and are accompanied by images of their work. These fine artists--who include mathematicians and scientists--examine how mathematics influences their art. Accessible to students of all levels, Viewpoints encourages experimentation and collaboration, and captures the essence of artistic and mathematical creation and discovery. Classroom-tested activities and problem solving Accessible problems that move beyond regular art school curriculum Multiple solutions of varying difficulty and applicability Appropriate for students of all mathematics and art levels Original and exclusive essays by contemporary artists Forthcoming: Instructor's manual (available only to teachers)
Mathematical Perspectives: Essays on Mathematics and its Historical Development is a collection of 13 biographical essays on the historical advances of science. This collection is originally meant to comprise an issue of the journal Historia Mathematica in honor of Professor Kurt R. Biermann's 60th birthday. This 12-chapter text includes essays on studies and commentaries on the problem of "figures of equal perimeter by various authors in antiquity, including Zenodorus, Theon, and Pappus. Other essays explore the comparison of the areas of polygons with equal perimeter; the concept of function; history of mathematics; the development of mathematical physics in France; and the history of Logicism and Formalism. The remaining chapters deal with essays on an early version of Gauss' Disquisitiones Arithmeticae, ideal numbers, a mathematical-philosophilica theory of probability, and historical examples of problem of number sequence interpolation. This book will be of value to mathematicians, historians, and researchers.
This book presents the basics of mathematics that are needed for learning the physics of today. It describes briefly the theories of groups and operators, finite- and infinite-dimensional algebras, concepts of symmetry and supersymmetry, and then delineates their relations to theories of relativity and black holes, classical and quantum physics, electroweak fields and Yang-Mills. It concludes with a chapter on (the complex theory of) strings and superstrings and their link to black holes — an idea that fascinates both the physicist and the mathematician. Contents:Complex Functions, Riemann Surfaces and Two-Dimensional Conformal Field Theory (an Introduction)Elements of Group Theory and Group RepresentationsA Primer on OperatorsBasics of Algebras and Related ConceptsInfinite-Dimensional AlgebrasThe Role of Symmetry in Physics and MathematicsAll That's Super — An IntroductionGravitation, Relativity and Black HolesBasics of Quantum TheoryTheory of Yang–Mills and the Yang–Mills–Higgs MechanismStrings and Superstrings (Elementary Aspects) Readership: Upper level undergraduates, graduate students, lecturers and researchers in theoretical physics, mathematical physics, quantum physics and astrophysics as well as Yang-Mills and superstring theory.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
This is an anthology of contemporary studies from various disciplinary perspectives written by some of the world's most renowned experts in each of the areas of mathematics, neuroscience, psychology, linguistics, semiotics, education, and more. Its purpose is not to add merely to the accumulation of studies, but to show that math cognition is best approached from various disciplinary angles, with the goal of broadening the general understanding of mathematical cognition through the different theoretical threads that can be woven into an overall understanding. This volume will be of interest to mathematicians, cognitive scientists, educators of mathematics, philosophers of mathematics, semioticians, psychologists, linguists, anthropologists, and all other kinds of scholars who are interested in the nature, origin, and development of mathematical cognition.
Recent years have seen an explosion of new mathematical results on learning and processing in neural networks. This body of results rests on a breadth of mathematical background which even few specialists possess. In a format intermediate between a textbook and a collection of research articles, this book has been assembled to present a sample of these results, and to fill in the necessary background, in such areas as computability theory, computational complexity theory, the theory of analog computation, stochastic processes, dynamical systems, control theory, time-series analysis, Bayesian analysis, regularization theory, information theory, computational learning theory, and mathematical statistics. Mathematical models of neural networks display an amazing richness and diversity. Neural networks can be formally modeled as computational systems, as physical or dynamical systems, and as statistical analyzers. Within each of these three broad perspectives, there are a number of particular approaches. For each of 16 particular mathematical perspectives on neural networks, the contributing authors provide introductions to the background mathematics, and address questions such as: * Exactly what mathematical systems are used to model neural networks from the given perspective? * What formal questions about neural networks can then be addressed? * What are typical results that can be obtained? and * What are the outstanding open problems? A distinctive feature of this volume is that for each perspective presented in one of the contributed chapters, the first editor has provided a moderately detailed summary of the formal results and the requisite mathematical concepts. These summaries are presented in four chapters that tie together the 16 contributed chapters: three develop a coherent view of the three general perspectives -- computational, dynamical, and statistical; the other assembles these three perspectives into a unified overview of the neural networks field.
Readership: Upper level undergraduates, graduate students, lecturers and researchers in theoretical, mathematical and quantum physics.
From the impossibility of a perfectly democratic vote to a clarifying model for affirmative action debates, constitutional law professor and math enthusiast Michael Meyerson "provides an engaging and unusual perspective on the no-man's land between mathematics and the law" (John Allen Paulos). In thoroughly accessible and entertaining terms, Meyerson shows how the principle of probability influenced the outcomes of the O. J. Simpson trials; makes a convincing case for the mathematical virtues of the electoral college; uses game theory to explain the federal government's shifting balance of power; relates the concept of infinity to the heated abortion debate; and uses topology and chaos theory to explain how our Constitution has successfully survived social and political change.