Download Free Mathematical Modelling Simulation And Optimisation Of Dynamic Transportation Networks With Applications In Production And Traffic Book in PDF and EPUB Free Download. You can read online Mathematical Modelling Simulation And Optimisation Of Dynamic Transportation Networks With Applications In Production And Traffic and write the review.

This book offers a state-of-the-art introduction to the mathematical theory of supply chain networks, focusing on those described by partial differential equations. The authors discuss modeling of complex supply networks as well as their mathematical theory, explore modeling, simulation, and optimization of some of the discussed models, and present analytical and numerical results on optimization problems. Real-world examples are given to demonstrate the applicability of the presented approaches. Graduate students and researchers who are interested in the theory of supply chain networks described by partial differential equations will find this book useful. It can also be used in advanced graduate-level courses on modeling of physical phenomena as well as introductory courses on supply chain theory.
Logistics and transportation are a complex set of entities and systems interconnected by many physical, financial, and information flows, and, as with all systems, there are optimization and planning issues. In addition, they are subject to economic, social, and especially environmental pressures with the need to reduce energy consumption and greenhouse gas emissions. There is a need for original research to address these issues. Transport and Logistics Planning and Optimization addresses selected transportation and logistics problems at the strategic, tactical, and operational levels in a multidisciplinary approach, not only from a technological perspective but also from a social science perspective. Covering key topics such as supply chain, urban transportation, artificial intelligence, and computer science, this premier reference source is ideal for policymakers, industry professionals, researchers, academicians, scholars, instructors, and students.
This book shows how the systems approach is employed by scientists in various countries to solve specific problems concerning railway transport. In particular, the book describes the experiences of scientists from Romania, Germany, the Czech Republic, the UK, Russia, Ukraine, Lithuania and Poland. For many of these countries there is a problem with the historical differences between the railways. In particular, there are railways with different rail gauges, with different signaling and communication systems, with different energy supplies and, finally, with different political systems, which are reflected in the different approaches to the management of railway economies. The book’s content is divided into two main parts, the first of which provides a systematic analysis of individual means of providing and maintaining rail transport. In turn, the second part addresses infrastructure and management development, with particular attention to security issues. Though primarily written for professionals involved in various problems concerning railway transport, the book will also benefit manufacturers, railway technical staff, managers, and students with transport specialties, as well as a wide range of readers interested in learning more about the current state of transport in different countries.
This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions.
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
This book provides a coherent and systematic view of the key concepts, principles, and techniques in maritime container transport and logistics chains including all the main segments: international maritime trade and logistics, freight logistics, container logistics, vessel logistics, port and terminal management, and sustainability issues in maritime transport. Container Logistics and Maritime Transport emphasizes analytical methods and current optimization models to tackle challenging issues in maritime transport and logistics. This book takes a holistic approach to cover all the main segments of the container shipping supply chains to achieve an efficient and effective logistics service system across the entire global transport chain. Sustainability issues such as social concern and carbon emissions from shipping and ports are also discussed. Each maritime transport segment is addressed using an approach from qualitative/descriptive analytics to quantitative/prescriptive analytics. Cutting-edge optimization models are presented and explained to tackle various strategic, tactical, and operational planning problems. The book will help readers better understand operations management in global maritime container transport chain. It will also provide practical principles and effective techniques and tools for researchers to push forward the frontiers of knowledge and for practitioners to implement decision support systems. It will be directly relevant to academic courses related to maritime transport, maritime logistics, transport management, international shipping, port management, container shipping, container logistics, shipping supply chain, and international logistics.
These proceedings of the SAI Intelligent Systems Conference 2016 (IntelliSys 2016) offer a remarkable collection of papers on a wide range of topics in intelligent systems, and their applications to the real world. Authors hailing from 56 countries on 5 continents submitted 404 papers to the conference, attesting to the global importance of the conference’s themes. After being reviewed, 222 papers were accepted for presentation, and 168 were ultimately selected for these proceedings. Each has been reviewed on the basis of its originality, novelty and rigorousness. The papers not only present state-of-the-art methods and valuable experience from researchers in the related research areas; they also outline the field’s future development.
The use of artificial intelligence, especially in the field of optimization is increasing day by day. The purpose of this book is to explore the possibility of using different kinds of optimization algorithms to advance and enhance the tools used for computer and electrical engineering purposes.
One aspect of the new economy is a transition to a networked society, and the emergence of a highly interconnected, interdependent and complex system of networks to move people, goods and information. An example of this is the in creasing reliance of networked systems (e. g. , air transportation networks, electric power grid, maritime transport, etc. ) on telecommunications and information in frastructure. Many of the networks that evolved today have an added complexity in that they have both a spatial structure – i. e. , they are located in physical space but also an a spatial dimension brought on largely by their dependence on infor mation technology. They are also often just one component of a larger system of geographically integrated and overlapping networks operating at different spatial levels. An understanding of these complexities is imperative for the design of plans and policies that can be used to optimize the efficiency, performance and safety of transportation, telecommunications and other networked systems. In one sense, technological advances along with economic forces that encourage the clustering of activities in space to reduce transaction costs have led to more efficient network structures. At the same time the very properties that make these networks more ef ficient have also put them at a greater risk for becoming disconnected or signifi cantly disruptedwh en super connected nodes are removed either intentionally or through a targeted attack.