Download Free Mathematical Modeling And Signal Processing In Speech And Hearing Sciences Book in PDF and EPUB Free Download. You can read online Mathematical Modeling And Signal Processing In Speech And Hearing Sciences and write the review.

The aim of the book is to give an accessible introduction of mathematical models and signal processing methods in speech and hearing sciences for senior undergraduate and beginning graduate students with basic knowledge of linear algebra, differential equations, numerical analysis, and probability. Speech and hearing sciences are fundamental to numerous technological advances of the digital world in the past decade, from music compression in MP3 to digital hearing aids, from network based voice enabled services to speech interaction with mobile phones. Mathematics and computation are intimately related to these leaps and bounds. On the other hand, speech and hearing are strongly interdisciplinary areas where dissimilar scientific and engineering publications and approaches often coexist and make it difficult for newcomers to enter.
The book comprises contributions by some of the most respected scientists in the field of mathematical modeling and numerical simulation of the human cardiocirculatory system. The contributions cover a wide range of topics, from the preprocessing of clinical data to the development of mathematical equations, their numerical solution, and both in-vivo and in-vitro validation. They discuss the flow in the systemic arterial tree and the complex electro-fluid-mechanical coupling in the human heart. Many examples of patient-specific simulations are presented. This book is addressed to all scientists interested in the mathematical modeling and numerical simulation of the human cardiocirculatory system.
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.
This book intends to provide highlights of the current research in signal processing area and to offer a snapshot of the recent advances in this field. This work is mainly destined to researchers in the signal processing related areas but it is also accessible to anyone with a scientific background desiring to have an up-to-date overview of this domain. The twenty-five chapters present methodological advances and recent applications of signal processing algorithms in various domains as telecommunications, array processing, biology, cryptography, image and speech processing. The methodologies illustrated in this book, such as sparse signal recovery, are hot topics in the signal processing community at this moment. The editor would like to thank all the authors for their excellent contributions in different areas of signal processing and hopes that this book will be of valuable help to the readers.
Mathematical Models of Spoken Language presents the motivations for, intuitions behind, and basic mathematical models of natural spoken language communication. A comprehensive overview is given of all aspects of the problem from the physics of speech production through the hierarchy of linguistic structure and ending with some observations on language and mind. The author comprehensively explores the argument that these modern technologies are actually the most extensive compilations of linguistic knowledge available.Throughout the book, the emphasis is on placing all the material in a mathematically coherent and computationally tractable framework that captures linguistic structure. It presents material that appears nowhere else and gives a unification of formalisms and perspectives used by linguists and engineers. Its unique features include a coherent nomenclature that emphasizes the deep connections amongst the diverse mathematical models and explores the methods by means of which they capture linguistic structure. This contrasts with some of the superficial similarities described in the existing literature; the historical background and origins of the theories and models; the connections to related disciplines, e.g. artificial intelligence, automata theory and information theory; an elucidation of the current debates and their intellectual origins; many important little-known results and some original proofs of fundamental results, e.g. a geometric interpretation of parameter estimation techniques for stochastic models and finally the author's own unique perspectives on the future of this discipline. There is a vast literature on Speech Recognition and Synthesis however, this book is unlike any other in the field. Although it appears to be a rapidly advancing field, the fundamentals have not changed in decades. Most of the results are presented in journals from which it is difficult to integrate and evaluate all of these recent ideas. Some of the fundamentals have been collected into textbooks, which give detailed descriptions of the techniques but no motivation or perspective. The linguistic texts are mostly descriptive and pictorial, lacking the mathematical and computational aspects. This book strikes a useful balance by covering a wide range of ideas in a common framework. It provides all the basic algorithms and computational techniques and an analysis and perspective, which allows one to intelligently read the latest literature and understand state-of-the-art techniques as they evolve.
Karlheinz Brandenburg and Mark Kahrs With the advent of multimedia, digital signal processing (DSP) of sound has emerged from the shadow of bandwidth limited speech processing. Today, the main appli cations of audio DSP are high quality audio coding and the digital generation and manipulation of music signals. They share common research topics including percep tual measurement techniques and analysis/synthesis methods. Smaller but nonetheless very important topics are hearing aids using signal processing technology and hardware architectures for digital signal processing of audio. In all these areas the last decade has seen a significant amount of application oriented research. The topics covered here coincide with the topics covered in the biannual work shop on “Applications of Signal Processing to Audio and Acoustics”. This event is sponsored by the IEEE Signal Processing Society (Technical Committee on Audio and Electroacoustics) and takes place at Mohonk Mountain House in New Paltz, New York. A short overview of each chapter will illustrate the wide variety of technical material presented in the chapters of this book. John Beerends: Perceptual Measurement Techniques. The advent of perceptual measurement techniques is a byproduct of the advent of digital coding for both speech and high quality audio signals. Traditional measurement schemes are bad estimates for the subjective quality after digital coding/decoding. Listening tests are subject to sta tistical uncertainties and the basic question of repeatability in a different environment.
This book explores the life and scientific legacy of Manfred Schroeder through personal reflections, scientific essays and Schroeder’s own memoirs. Reflecting the wide range of Schroeder’s activities, the first part of the book contains thirteen articles written by his colleagues and former students. Topics discussed include his early, pioneering contributions to the understanding of statistical room acoustics and to the measurement of reverberation time; his introduction of digital signal processing methods into acoustics; his use of ray tracing methods to study sound decay in rooms and his achievements in echo and feedback suppression and in noise reduction. Other chapters cover his seminal research in speech processing including the use of predictive coding to reduce audio bandwidth which led to various code-excited linear prediction schemes, today used extensively for speech coding. Several chapters discuss Schroeder’s work in low-peak factor signals, number theory, and maximum-length sequences with key applications in hearing research, diffraction gratings, artificial reverberators and de-correlation techniques for enhancing subjective envelopment in surround sound. In style, the articles range from truly scientific to conversationally personal. In all contributions, the relationship between the current research presented and Manfred Schroeder’s own fields of interest is, in general, evident. The second part of the book consists of Schroeder’s own memoirs, written over the final decade of his life. These recollections shed light on many aspects not only of Schroeder’s life but also on that of many of his colleagues, friends and contemporaries. They portray political, social and scientific events over a period that extends from pre-war to the present. These memoirs, written in an inimitable and witty style, are full of information, entertaining and fun to read, providing key insight into the life and work of one of the greatest acousticians of the 20th century.