Download Free Mathematical Ideas Book in PDF and EPUB Free Download. You can read online Mathematical Ideas and write the review.

Designed with a variety of students in mind. Well suited for several courses, including those geared toward the aforementioned liberal arts audience and survey courses in mathematics, finite mathematics, and mathematics for prospective and in-service elementary and middle-school teachers.
In math, like any subject, real learning takes place when students can connect what they already know to new ideas. In "Connecting Mathematical Idea"s, Jo Boaler and Cathy Humphreys offer a comprehensive way to improve your ability to help adolescents build connections between different mathematical ideas and representations and between domains like algebra and geometry. "Connecting Mathematical Ideas" contains two-CDs worth of video case studies from Humphreys' own middle-school classroom that show her encouraging students to bridge complex mathematical concepts with their prior knowledge. Replete with math talk and coverage of topics like representation, reasonableness, and proof, the CDs also include complete transcripts and study questions that stimulate professional learning. Meanwhile, the accompanying book guides you through the CDs with in-depth commentary from Boaler and Humphreys that breaks down and analyzes the lesson footage from both a theoretical and a practical standpoint. In addition to addressing the key content areas of middle school mathematics, Boaler and Humphreys pose and help you address a broad range of frequently asked pedagogical questions, such as: How can I organize productive class discussions? How do I ask questions that stimulate discussion and thought among my students? What's the most effective way to encourage reticent class members to speak up? What role should student errors play in my teaching? Go inside real classrooms to solve your toughest teaching questions. Use the case studies and the wealth of professional support within "Connecting Mathematical Ideas" and find new ways to help your students connect with math.
Grade level: k, t.
Talking about numbers - Connecting numbers, stories and facts - Numbers and operations - Collecting, representing and interpreting data - Investigating geometry with pictures and words - Sights and sounds of measurement - Seeing patterns and sharing algebraic ideas - Seeing and hearingng_____________
Modeling Mathematical Ideas combining current research and practical strategies to build teachers and students strategic competence in problem solving.This must-have book supports teachers in understanding learning progressions that addresses conceptual guiding posts as well as students’ common misconceptions in investigating and discussing important mathematical ideas related to number sense, computational fluency, algebraic thinking and proportional reasoning. In each chapter, the authors opens with a rich real-world mathematical problem and presents classroom strategies (such as visible thinking strategies & technology integration) and other related problems to develop students’ strategic competence in modeling mathematical ideas.
"An introduction to some of the mathematical ideas which are useful to biologists, ... the ways in which biological problems can be expressed mathematically, and how the mathematical equations which arise in biological work can be solved ... This book is particularly concerned with non-statistical topics"--From publisher description.
"Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem. Diaconis and Graham are mathematicians as well as skilled performers with decades of professional experience between them. In this book they share a wealth of conjuring lore, including some closely guarded secrets of legendary magicians. Magical Mathematics covers the mathematics of juggling and shows how the I Ching connects to the history of probability and magic tricks both old and new. It tells the stories--and reveals the best tricks--of the eccentric and brilliant inventors of mathematical magic. Magical Mathematics exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card monte, traces the history of mathematical magic back to the thirteenth century and the oldest mathematical trick--and much more"-
The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detailed than standard mathematical textbooks so that the reader can readily grasp the essential concepts and ideas for individual needs. It will be suitable for advanced mathematicians, postgraduate students and for scientists from other fields with some background in formal reasoning.
Put math manipulatives to work in your classroom and make teaching and learning math both meaningful and productive. Mastering Math Manipulatives includes everything you need to integrate math manipulatives—both concrete and virtual—into math learning. Each chapter of this richly illustrated, easy-to-use guide focuses on a different powerful tool, such as base ten blocks, fraction manipulatives, unit squares and cubes, Cuisenaire Rods, Algebra tiles and two-color counters, geometric strips and solids, geoboards, and others, and includes a set of activities that demonstrate the many ways teachers can leverage manipulatives to model and reinforce math concepts for all learners. It features: · Classroom strategies for introducing math manipulatives, including commercial, virtual, and hand-made manipulatives, into formal math instruction. · Step-by-step instructions for over 70 activities that work with any curriculum, including four-color photos, printable work mats, and demonstration videos. · Handy charts that sort activities by manipulative type, math topic, domains aligned with standards, and grade-level appropriateness.
Presents more than one hundred fifty puzzles, games, and other activities designed to stimulate an interest in mathematics, especially in children from nine to twelve and older