Download Free Mathematical Combinatorics Vol 2 2008 Book in PDF and EPUB Free Download. You can read online Mathematical Combinatorics Vol 2 2008 and write the review.

The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe. The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
The volume has 15 papers: Paper 1: Smarandache Curves Paper 2. Ruled Surface Pair Paper 3. Tutte Polynomial Paper 4.Entire Equitable Dominating Graph and Smarandachely dominating set. Paper 5. Radio Mean Number of Graphs Paper 6. Modified Schultz Index Paper 7. Folding of Cayley Graphs Paper 8. The Merrifield-Simmons Index Paper 9. Linear Codes Over Non-Chain Ring Paper 10. Nonsplit Geodetic Number and Smarandachely k- geodetic set, Paper 11. k-Difference cordial labeling and Smarandachely k-difference cordial labeling. Paper 12.Traversability and Covering Invariant Paper 13. Different Labelings. paper 14. Armed Cap Cordial Labeling and Smarandache ∧ cordial labeling Paper 15.Traffic Congestion
Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics; Mathematical theory on gravitational fields; Mathematical theory on parallel universes; Other applications of Smarandache multi-space and combinatorics.
The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe. The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe. The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
Papers by many authors about the Chromatic Polynomial of Smarandache νE-Product of Graphs, Smarandachely k-Constrained Number of Paths and Cycles, Smarandache multi-space, Smarandachely Schwarzschild space, Smarandachely degree equitable k-set, Smarandachely labeling, Smarandachely k − constrained labeling, Smarandache space, Smarandachely achromatic 1-coloring for the central graph, middle graph, total graph and line graph of double star graph, Smarandachely edge m-labeling, Smarandachely super m-mean labeling, etc.
Contents A Calculus and Algebra Derived from Directed Graph Algebras By Kh.Shahbazpour and Mahdihe Nouri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01 Superior Edge Bimagic Labelling By R.Jagadesh and J.Baskar Babujee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Spherical Images of Special Smarandache Curves in E3 By Vahide Bulut and Ali Caliskan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Variations of Orthogonality of Latin Squares By Vadiraja Bhatta G.R. and B.R.Shankar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 The Minimum Equitable Domination Energy of a Graph By P.Rajendra and R.Rangarajan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Some Results on Relaxed Mean Labeling By V.Maheswari, D.S.T.Ramesh and V.Balaji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Split Geodetic Number of a Line Graph By Venkanagouda M Goudar and Ashalatha K.S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Skolem Difference Odd Mean Labeling For Some Simple Graphs By R.Vasuki, J.Venkateswari and G.Pooranam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Radio Number for Special Family of Graphs with Diameter 2, 3 and 4 By M.Murugan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Vertex-to-Edge-set Distance Neighborhood Pattern Matrices By Kishori P.Narayankar and Lokesh S. B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Extended Results on Complementary Tree Domination Number and Chromatic Number of Graphs By S.Muthammai and P.Vidhya . . . . . . . . . . . . . . . . . . . . . . . 116 On Integer Additive Set-Sequential Graphs By N.K.Sudev and K.A.Germina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.