Download Free Material Response Characterization Book in PDF and EPUB Free Download. You can read online Material Response Characterization and write the review.

"This is a comprehensive volume on analytical techniques used in materials science for the characterization of surfaces, interfaces and thin films. This flagship volume is a unique, stand-alone reference for materials science practitioners, process engineers, students and anyone with a need to know about the capabilities available in materials analysis. An encyclopedia of 50 concise articles, this book will also be a practical companion to the forthcoming books in the series."--Knovel.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
In joint replacement surgery with suboptimal bone, allograft materials are often used to achieve biological fixation of the metallic implant to the host bone and reducing the implant fixation time. The most commonly used techniques are cemented and hydroxyapatite (HA)-coated metallic implants. Typically, HA coatings are suggested for patients with better bone stock, whereas recommended implant fixation process for most other osteoporotic patients is bone cements. In general, there is a long-standing need to improve the performance of hip and other devices for longer in vivo implant lifetime that can help in reducing the number of revision surgeries, as well as minimizing physical and mental trauma to the patient. To achieve these goals, it is important to understand the mechanical and biological properties of coatings that can influence not only its short- and long-term bioactivity but also life span in vivo. Over the years, it has been recognized that the stability of a coated implant is governed by its physical and mechanical properties. A coating that separates from the implant provides no advantage over an uncoated implant and undesirable due to problems with debris materials, which can lead to osteolysis. Therefore, it is important to properly characterize the coated implants in terms of its physical and mechanical properties. In this chapter, specific details on coating characterization techniques including sample dimensions, sample preparation, experimental procedure and data interpretation are discussed. In particular, the standards and requirements of regulatory organizations are presented elucidating the significance and use of each characterization. It is important to appreciate that mechanical properties of coatings can only be determined with certain coating specification such as coating thickness. This chapter is designed even for non-experts to follow mechanical property characterizations of coatings on medical implants.
Membrane Characterization provides a valuable source of information on how membranes are characterized, an extremely limited field that is confined to only brief descriptions in various technical papers available online. For the first time, readers will be able to understand the importance of membrane characterization, the techniques required, and the fundamental theory behind them. This book focuses on characterization techniques that are normally used for membranes prepared from polymeric, ceramic, and composite materials. - Features specific details on many membrane characterization techniques for various membrane materials of industrial and academic interest - Contains examples of international best practice techniques for the evaluation of several membrane parameters, including pore size, charge, and fouling - Discusses various membrane models more suitable to a specific application - Provides examples of ab initio calculations for the design, optimization, and scale-up of processes based on characterization data
Deliberately, accidentally, or consequentially, first responders and waste site workers handle unknown substances of varying degrees of danger every day. Unidentified chemicals involved with clandestine production of WMD agents or drugs, explosive materials, unlabeled waste, and forensic samples all pose a threat to the worker and those they prote
Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. - Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales - Provides fundamental theoretical insights, example problems, sample code and exercise problems - Outlines major characterization and synthesis methods for different types of 2D materials
Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques. - Introduces a range of advanced characterization methods, covering aspects such as molecular weight, polydispersity, branching, composition, and tacticity - Enables the reader to understand and to compare the available technique, and implement the selected technique(s), with a view to improving properties of the polymeric material - Establishes a strong link between basic principles, characterization techniques, and real-life applications
Characterization Techniques for Perovskite Solar Cell Materials: Characterization of Recently Emerged Perovskite Solar Cell Materials to Provide an Understanding of the Fundamental Physics on the Nano Scale and Optimize the Operation of the Device Towards Stable and Low-Cost Photovoltaic Technology explores the characterization of nanocrystals of the perovskite film, related interfaces, and the overall impacts of these properties on device efficiency. Included is a collection of both main and research techniques for perovskite solar cells. For the first time, readers will have a complete reference of different characterization techniques, all housed in a work written by highly experienced experts. - Explores various characterization techniques for perovskite solar cells and discusses both their strengths and weaknesses - Discusses material synthesis and device fabrication of perovskite solar cells - Includes a comparison throughout the work on how to distinguish one perovskite solar cell from another
This book, which is a result of a coordinated effort by 22 researchers from five different countries, addresses the methods of determining the local and global mechanical properties of a variety of materials: metals, plastics, rubber, and ceramics. The first chapter treats nanoindentation techniques comprehensively. Chapter 2 concerns polymer surfa