Download Free Material Handling Equipment Selection Via An Expert System Book in PDF and EPUB Free Download. You can read online Material Handling Equipment Selection Via An Expert System and write the review.

Proceedings of the Third IDMME Conference held in Montreal, Canada, May 2000
Through expanded intelligence, the use of robotics has fundamentally transformed a variety of fields, including manufacturing, aerospace, medicine, social services, and agriculture. Continued research on robotic design is critical to solving various dynamic obstacles individuals, enterprises, and humanity at large face on a daily basis. Robotic Systems: Concepts, Methodologies, Tools, and Applications is a vital reference source that delves into the current issues, methodologies, and trends relating to advanced robotic technology in the modern world. Highlighting a range of topics such as mechatronics, cybernetics, and human-computer interaction, this multi-volume book is ideally designed for robotics engineers, mechanical engineers, robotics technicians, operators, software engineers, designers, programmers, industry professionals, researchers, students, academicians, and computer practitioners seeking current research on developing innovative ideas for intelligent and autonomous robotics systems.
This book is aimed at both researchers and practitioners, and provides a collection of expert systems in manufacturing and production engineering along with their knowledge base and rules. We believe that inclusion of the knowledge base and associated rules is essential if practitioners are to derive full benefit from these expert systems. This unique book is the result of our belief and the efforts of our distinguished colleagues who subscribe to this philosophy. A total of 15 different expert systems are included in this book. These expert systems are preceded by an introductory chapter written by Kuo, Preface XVll Mital and Anand. The expert system rules are included on a floppy disk in ASCII and can be easily accessed. These rules and the description of the expert system's structure should assist the users in customizing these systems. Overall, the expert systems included in this volume cover a fairly wide variety of manufacturing and production engineering topics.
Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods presents the concepts and details of applications of MADM methods. A range of methods are covered including Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR), Data Envelopment Analysis (DEA), Preference Ranking METHod for Enrichment Evaluations (PROMETHEE), ELimination Et Choix Traduisant la Realité (ELECTRE), COmplex PRoportional ASsessment (COPRAS), Grey Relational Analysis (GRA), UTility Additive (UTA), and Ordered Weighted Averaging (OWA). The existing MADM methods are improved upon and three novel multiple attribute decision making methods for solving the decision making problems of the manufacturing environment are proposed. The concept of integrated weights is introduced in the proposed subjective and objective integrated weights (SOIW) method and the weighted Euclidean distance based approach (WEDBA) to consider both the decision maker’s subjective preferences as well as the distribution of the attributes data of the decision matrix. These methods, which use fuzzy logic to convert the qualitative attributes into the quantitative attributes, are supported by various real-world application examples. Also, computer codes for AHP, TOPSIS, DEA, PROMETHEE, ELECTRE, COPRAS, and SOIW methods are included. This comprehensive coverage makes Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods a key reference for the designers, manufacturing engineers, practitioners, managers, institutes involved in both design and manufacturing related projects. It is also an ideal study resource for applied research workers, academicians, and students in mechanical and industrial engineering.
This text looks at mine planning and equipment and covers topics such as: design and planning of surface and underground mines; geotechnical stability in surface and underground mines; and mining and the environment.
This unique book presents innovative and state-of-the-art computational models for determining the optimal truck–loader selection and allocation strategy for use in large and complex mining operations. The authors provide comprehensive information on the methodology that has been developed over the past 50 years, from the early ad hoc spreadsheet approaches to today’s highly sophisticated and accurate mathematical-based computational models. The authors’ approach is motivated and illustrated by real case studies provided by our industry collaborators. The book is intended for a broad audience, ranging from mathematicians with an interest in industrial applications to mining engineers who wish to utilize the most accurate, efficient, versatile and robust computational models in order to refine their equipment selection and allocation strategy. As materials handling costs represent a significant component of total costs for mining operations, applying the optimization methodology developed here can substantially improve their competitiveness
Integrated Design of a Product Family and Its Assembly System presents an integrated approach for the design of a product family and its assembly system, whose main principles consider the product family as a fictitious unique product for which the assembly system is to be devised. It imposes assembly and operation constraints as late as possible in the design process to get liberties in the system design, and adapts the product family at each design stage to integrate the new constraints related to the successive design choices. Integrated Design of a Product Family and Its Assembly System is an important, must-have book for researchers and Ph.D. students in Computer-Integrated Manufacturing, Mechanical Engineering, and Manufacturing, as well as practitioners in the Design, Planning and Production departments in the manufacturing industry. Integrated Design of a Product Family and Its Assembly System is also suitable for use as a textbook in courses such as Computer-Aided Design, Concurrent Engineering, Design for Assembly, Process Planning, and Integrated Design.
This book gathers the latest advances, innovations, and applications in the field of energy, environmental and construction engineering, as presented by international researchers and engineers at the International Scientific Conference Energy, Environmental and Construction Engineering, held in St. Petersburg, Russia on November 19-20, 2020. It covers highly diverse topics, including BIM; bridges, roads and tunnels; building materials; energy efficient and green buildings; structural mechanics; fluid mechanics; measuring technologies; environmental management; power consumption management; renewable energy; smart cities; and waste management. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
Multi-criteria decision-making (MCDM) has gained vast popularity for its ability to help make decisions in the presence of various similar and conflicting choices.This new volume applies the MCDM theory to solving problems and challenges in manufacturing environments. It discusses using MCDM computational methods to evaluate and select the most optimal solution or method for real-world, real-time manufacutring engineering issues. It details the decision-making process in relation materials selection; identification, assessment, and evaluation of risk; sustainability assessment; selection of green suppliers; and more. The chapter authors demonstrate the application of myriad MCDM techniques in decision-making, including MADM (multiple attribute decision-making), DEA (data envelopment analysis), fuzzy TOPSIS (technique for order preference by similarities to ideal solution), fuzzy-VIKOR (multicriteria optimization and compromise solution); MOORA (multi-objective optimization on the basis of ratio analysis), EWM (entropy weight method), (AHP) analytic hierarchy process, TODIM (TOmada de Decisao Interativa Multicriterio), and others. The volume illustrates these MCDM models in several industries and industrial processes, including for experimental analysis and optimization of drilling of glass fiber reinforced plastic, in the textile industries, for selection of refrigerants for domestic applications, and others.
FLINS, originally an acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended to Computational Intelligence for applied research. The contributions to the eighth edition in the series of FLINS conferences cover state-of-the-art research, development, and technology for computational intelligence systems in general, and for intelligent decision and control in particular.