Download Free Mastering Research Statistics Book in PDF and EPUB Free Download. You can read online Mastering Research Statistics and write the review.

"Mastering Research Methodology: A Practical Guide" assists professionals, scholars, and students in attaining a comprehensive understanding of the art and science of research. This all-encompassing manual provides explicitand exhaustive guidance on a wide range of research methodologies, encompassing qualitative and quantitative approaches. The book commences by providing readers with an introduction to fundamental concepts, including the significance of ethical considerations, hypothesis formulation, and research design principles. The subsequent section explores distinct research methodologies, such as mixed-methods, experimental, survey, case study, and ethnographic approaches. Every chapter of the book offers precise instructions on how to execute these methods, beginning with data collection and concluding with analysis, thereby guaranteeing that readers are capable of effectively applying these techniques to their own projects. The practical orientation of "Mastering Research Methodology" is one of its defining characteristics. Practical advice, real-world illustrations, and case studies serve to reconcile the divide between theoretical concepts and their real-world implementation. This practical methodology enables readers to comprehend the intricacies of scientific inquiry, arrive at well-informed methodological decisions, and confront prevalent obstacles. The book places significant emphasis on the essential significance of data integrity and research ethics, in addition to methodological instruction. This resource offers approaches to guaranteeing the integrity of data, preserving openness, and adhering to ethical principles during the entirety of the research endeavour.
A core statistics text that emphasizes logical inquiry, not math Basic Statistics for Social Research teaches core general statistical concepts and methods that all social science majors must master to understand (and do) social research. Its use of mathematics and theory are deliberately limited, as the authors focus on the use of concepts and tools of statistics in the analysis of social science data, rather than on the mathematical and computational aspects. Research questions and applications are taken from a wide variety of subfields in sociology, and each chapter is organized around one or more general ideas that are explained at its beginning and then applied in increasing detail in the body of the text. Each chapter contains instructive features to aid students in understanding and mastering the various statistical approaches presented in the book, including: Learning objectives Check quizzes after many sections and an answer key at the end of the chapter Summary Key terms End-of-chapter exercises SPSS exercises (in select chapters) Ancillary materials for both the student and the instructor are available and include a test bank for instructors and downloadable video tutorials for students.
From Joshua Angrist, winner of the Nobel Prize in Economics, and Jörn-Steffen Pischke, an accessible and fun guide to the essential tools of econometric research Applied econometrics, known to aficionados as 'metrics, is the original data science. 'Metrics encompasses the statistical methods economists use to untangle cause and effect in human affairs. Through accessible discussion and with a dose of kung fu–themed humor, Mastering 'Metrics presents the essential tools of econometric research and demonstrates why econometrics is exciting and useful. The five most valuable econometric methods, or what the authors call the Furious Five—random assignment, regression, instrumental variables, regression discontinuity designs, and differences in differences—are illustrated through well-crafted real-world examples (vetted for awesomeness by Kung Fu Panda's Jade Palace). Does health insurance make you healthier? Randomized experiments provide answers. Are expensive private colleges and selective public high schools better than more pedestrian institutions? Regression analysis and a regression discontinuity design reveal the surprising truth. When private banks teeter, and depositors take their money and run, should central banks step in to save them? Differences-in-differences analysis of a Depression-era banking crisis offers a response. Could arresting O. J. Simpson have saved his ex-wife's life? Instrumental variables methods instruct law enforcement authorities in how best to respond to domestic abuse. Wielding econometric tools with skill and confidence, Mastering 'Metrics uses data and statistics to illuminate the path from cause to effect. Shows why econometrics is important Explains econometric research through humorous and accessible discussion Outlines empirical methods central to modern econometric practice Works through interesting and relevant real-world examples
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Mastering the Semi-Structured Interview and Beyond offers an in-depth and captivating step-by-step guide to the use of semi-structured interviews in qualitative research. By tracing the life of an actual research project–an exploration of a school district's effort over 40 years to address racial equality–as a consistent example threaded across the volume, Anne Galletta shows in concrete terms how readers can approach the planning and execution of their own new research endeavor, and illuminates unexpected real-life challenges they may confront and how to address them. The volume offers a close look at the inductive nature of qualitative research, the use of researcher reflexivity, and the systematic and iterative steps involved in data collection, analysis, and interpretation. It offers guidance on how to develop an interview protocol, including the arrangement of questions and ways to evoke analytically rich data. Particularly useful for those who may be familiar with qualitative research but have not yet conducted a qualitative study, Mastering the Semi-Structured Interview and Beyond will serve both undergraduate and graduate students as well as more advanced scholars seeking to incorporate this key methodological approach into their repertoire.
Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization About This Book Handle your data with precision and care for optimal business intelligence Restructure and transform your data to inform decision-making Packed with practical advice and tips to help you get to grips with data mining Who This Book Is For If you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic. What You Will Learn Connect to and load data from R's range of powerful databases Successfully fetch and parse structured and unstructured data Transform and restructure your data with efficient R packages Define and build complex statistical models with glm Develop and train machine learning algorithms Visualize social networks and graph data Deploy supervised and unsupervised classification algorithms Discover how to visualize spatial data with R In Detail R is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently. This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage. Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods. Style and approach Covering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.
This is an immensely helpful book for students starting their own research... an excellent introduction to the comparative method giving an authoritative overview over the research process - Klaus Armingeon, University of Bern Doing Research in Political Science is the book for mastering the comparative method in all the social sciences - Jan-Erik Lane, University of Geneva This book has established itself as a concise and well-readable text on comparative methods and statistics in political science I...strongly recommend it. - Dirk Berg-Schlosser, Philipps-University Marburg This thoroughly revised edition of the popular textbook offers an accessible but comprehensive introduction to comparative research methods and statistics for students of political science. Clearly organized around three parts, the text introduces the main theories and methodologies used in the discipline. Part 1 frames the comparative approach within the methodological framework of the political and social sciences. Part 2 introduces basic descriptive and inferential statistical methods as well as more advanced multivariate methods used in quantitative political analysis. Part 3 applies the methods and techniques of Parts 1 & 2 to research questions drawn from contemporary themes and issues in political science. Incorporating practice exercises, ideas for further reading and summary questions throughout, Doing Research in Political Science provides an invaluable step-by-step guide for students and researchers in political science, comparative politics and empirical political analysis.
Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University.