Download Free Massless Representations Of The Poincare Group Book in PDF and EPUB Free Download. You can read online Massless Representations Of The Poincare Group and write the review.

Preface 1 The Physical Meaning of Poincare Massless Representations 1 2 Massless Representations 12 3 Massless Fields are Different 32 4 How to Couple Massless and Massive Matter 56 5 The Behavior of Matter in Fields 73 6 Geometrical Reasons for the Poincare Group 95 7 Description of the Electromagnetic Field 123 8 The Equations Governing Free Gravitation 135 9 How Matter Determines Gravitational Fields 150 10 Nonlinearity and Geometry 165 11 Quantum Gravity 183 References 201 Index 207.
This book is devoted to an extensive and systematic study on unitary representations of the Poincar‚ group. The Poincar‚ group plays an important role in understanding the relativistic picture of particles in quantum mechanics. Complete knowledge of every free particle states and their behaviour can be obtained once all the unitary irreducible representations of the Poincar‚ group are found. It is a surprising fact that a simple framework such as the Poincar‚ group, when unified with quantum theory, fixes our possible picture of particles severely and without exception. In this connection, the theory of unitary representations of the Poincar‚ group provides a fundamental concept of relativistic quantum mechanics and field theory.
Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work.
This book is devoted to an extensive and systematic study on unitary representations of the Poincaré group. The Poincaré group plays an important role in understanding the relativistic picture of particles in quantum mechanics. Complete knowledge of every free particle states and their behaviour can be obtained once all the unitary irreducible representations of the Poincaré group are found. It is a surprising fact that a simple framework such as the Poincaré group, when unified with quantum theory, fixes our possible picture of particles severely and without exception. In this connection, the theory of unitary representations of the Poincaré group provides a fundamental concept of relativistic quantum mechanics and field theory.
This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.
Special relativity and quantum mechanics are likely to remain the two most important languages in physics for many years to come. The underlying language for both disciplines is group theory. Eugene P. Wigner's 1939 paper on the Unitary Representations of the Inhomogeneous Lorentz Group laid the foundation for unifying the concepts and algorithms of quantum mechanics and special relativity. In view of the strong current interest in the space-time symmetries of elementary particles, it is safe to say that Wigner's 1939 paper was fifty years ahead of its time. This edited volume consists of Wigner's 1939 paper and the major papers on the Lorentz group published since 1939. . This volume is intended for graduate and advanced undergraduate students in physics and mathematics, as well as mature physicists wishing to understand the more fundamental aspects of physics than are available from the fashion-oriented theoretical models which come and go. The original papers contained in this volume are useful as supplementary reading material for students in courses on group theory, relativistic quantum mechanics and quantum field theory, relativistic electrodynamics, general relativity, and elementary particle physics. This reprint collection is an extension of the textbook by the present editors entitled "Theory and Applications of the Poincare Group." Since this book is largely based on the articles contained herein, the present volume should be viewed as a reading for the previous work. continuation of and supplementary We would like to thank Professors J. Bjorken, R. Feynman, R. Hofstadter, J.