Download Free Mass Transfer Operations For The Practicing Engineer Book in PDF and EPUB Free Download. You can read online Mass Transfer Operations For The Practicing Engineer and write the review.

An invaluable guide for problem solving in mass transfer operations This book takes a highly pragmatic approach to providing the principles and applications of mass transfer operations by offering a valuable, easily accessible guide to solving engineering problems. Both traditional and novel mass transfer processes receive treatment. As with all of the books in this series, emphasis is placed on an example-based approach to illustrating key engineering concepts. The book is divided into two major parts. It starts with the principles underlying engineering problems showing readers how to apply general engineering principles to the topic of mass transfer operations. It then goes on to provide step-by-step guidance for traditional mass transfer operations, including distillation, absorption and stripping, and adsorption, plus novel mass transfer processes. Essential topics for professional engineering exams are also covered. Geared towards chemical, environmental, civil, and mechanical engineers working on real-world industrial applications, Mass Transfer Operations for the Practicing Engineer features: Numerous sample problems and solutions with real-world applications Clear, precise explanations on how to carry out the basic calculations associated with mass transfer operations Coverage of topics from the ground up for readers without prior knowledge of the subject Overview of topics relevant to the ABET (Accreditation Board for Engineering and Technology) for those taking the Professional Engineering (PE) exams Appendix containing relevant mass transfer operation charts and tables
This textbook is targetted to undergraduate students in chemical engineering, chemical technology, and biochemical engineering for courses in mass transfer, separation processes, transport processes, and unit operations. The principles of mass transfer, both diffusional and convective have been comprehensively discussed. The application of these principles to separation processes is explained. The more common separation processes used in the chemical industries are individually described in separate chapters. The book also provides a good understanding of the construction, the operating principles, and the selection criteria of separation equipment. Recent developments in equipment have been included as far as possible. The procedure of equipment design and sizing has been illustrated by simple examples. An overview of different applications and aspects of membrane separation has also been provided. ‘Humidification and water cooling’, necessary in every process indus-try, is also described. Finally, elementary principles of ‘unsteady state diffusion’ and mass transfer accompanied by a chemical reaction are covered. SALIENT FEATURES : • A balanced coverage of theoretical principles and applications. • Important recent developments in mass transfer equipment and practice are included. • A large number of solved problems of varying levels of complexities showing the applications of the theory are included. • Many end-chapter exercises. • Chapter-wise multiple choice questions. • An Instructors manual for the teachers.
The book presents the principles of unit operations as well as the application of these principles to real-world problems. The authors have written a practical introductory text exploring the theory and applications of unit operations for environmental engineers that is a comprehensive update to Linvil Rich's 1961 classic work, "Unit Operations in Sanitary Engineering". The book is designed to serve as a training tool for those individuals pursuing degrees that include courses on unit operations. Although the literature is inundated with publications in this area emphasizing theory and theoretical derivations, the goal of this book is to present the subject from a strictly pragmatic introductory point-of-view, particularly for those individuals involved with environmental engineering. This book is concerned with unit operations, fluid flow, heat transfer, and mass transfer. Unit operations, by definition, are physical processes although there are some that include chemical and biological reactions. The unit operations approach allows both the practicing engineer and student to compartmentalize the various operations that constitute a process, and emphasizes introductory engineering principles so that the reader can then satisfactorily predict the performance of the various unit operations equipment. "This is a definitive work on Unit Operations, one of the most important subjects in environmental engineering today. It is an excellent reference, well written, easily read and comprehensive. I believe the book will serve well those working in engineering disciplines including those beyond just environmental and chemical engineering. Bottom-line: A must for any technical library". —Kenneth J. Skipka, CCM
This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, including those in heat transfer. The second Part of the book is concerned with heat transfer principles. Topics that receive treatment include Steady-state Heat Conduction, Unsteady-state Heat Conduction, Forced Convection, Free Convection, Radiation, Boiling and Condensation, and Cryogenics. Part three (considered the heart of the book) addresses heat transfer equipment design procedures and applications. In addition to providing a detailed treatment of the various types of heat exchangers, this part also examines the impact of entropy calculations on exchanger design, and operation, maintenance and inspection (OM&I), plus refractory and insulation effects. The concluding Part of the text examines ABET (Accreditation Board for Engineering and Technology) related topics of concern, including economies and finance, numerical methods, open-ended problems, ethics, environmental management, and safety and accident management.
Enables you to easily advance from thermodynamics principles to applications Thermodynamics for the Practicing Engineer, as the title suggests, is written for all practicing engineers and anyone studying to become one. Its focus therefore is on applications of thermodynamics, addressing both technical and pragmatic problems in the field. Readers are provided a solid base in thermodynamics theory; however, the text is mostly dedicated to demonstrating how theory is applied to solve real-world problems. This text's four parts enable readers to easily gain a foundation in basic principles and then learn how to apply them in practice: Part One: Introduction. Sets forth the basic principles of thermodynamics, reviewing such topics as units and dimensions, conservation laws, gas laws, and the second law of thermodynamics. Part Two: Enthalpy Effects. Examines sensible, latent, chemical reaction, and mixing enthalpy effects. Part Three: Equilibrium Thermodynamics. Addresses both principles and calculations for phase, vapor-liquid, and chemical reaction equilibrium. Part Four: Other Topics. Reviews such important issues as economics, numerical methods, open-ended problems, environmental concerns, health and safety management, ethics, and exergy. Throughout the text, detailed illustrative examples demonstrate how all the principles, procedures, and equations are put into practice. Additional practice problems enable readers to solve real-world problems similar to the ones that they will encounter on the job. Readers will gain a solid working knowledge of thermodynamics principles and applications upon successful completion of this text. Moreover, they will be better prepared when approaching/addressing advanced material and more complex problems.
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
This book teaches the fundamentals of fluid flow by including both theory and the applications of fluid flow in chemical engineering. It puts fluid flow in the context of other transport phenomena such as mass transfer and heat transfer, while covering the basics, from elementary flow mechanics to the law of conservation. The book then examines the applications of fluid flow, from laminar flow to filtration and ventilization. It closes with a discussion of special topics related to fluid flow, including environmental concerns and the economic reality of fluid flow applications.
The subject of transport phenomena has long been thoroughly and expertly addressed on the graduate and theoretical levels. Now Transport Phenomena and Unit Operations: A Combined Approach endeavors not only to introduce the fundamentals of the discipline to a broader, undergraduate-level audience but also to apply itself to the concerns of practicing engineers as they design, analyze, and construct industrial equipment. Richard Griskey's innovative text combines the often separated but intimately related disciplines of transport phenomena and unit operations into one cohesive treatment. While the latter was an academic precursor to the former, undergraduate students are often exposed to one at the expense of the other. Transport Phenomena and Unit Operations bridges the gap between theory and practice, with a focus on advancing the concept of the engineer as practitioner. Chapters in this comprehensive volume include: Transport Processes and Coefficients Frictional Flow in Conduits Free and Forced Convective Heat Transfer Heat Exchangers Mass Transfer; Molecular Diffusion Equilibrium Staged Operations Mechanical Separations Each chapter contains a set of comprehensive problem sets with real-world quantitative data, affording students the opportunity to test their knowledge in practical situations. Transport Phenomena and Unit Operations is an ideal text for undergraduate engineering students as well as for engineering professionals.
Enables chemical engineering students to bridge theory and practice Integrating scientific principles with practical engineering experience, this text enables readers to master the fundamentals of chemical processing and apply their knowledge of such topics as material and energy balances, transport phenomena, reactor design, and separations across a broad range of chemical industries. The author skillfully guides readers step by step through the execution of both chemical process analysis and equipment design. Principles of Chemical Engineering Practice is divided into two sections: the Macroscopic View and the Microscopic View. The Macroscopic View examines equipment design and behavior from the vantage point of inlet and outlet conditions. The Microscopic View is focused on the equipment interior resulting from conditions prevailing at the equipment boundaries. As readers progress through the text, they'll learn to master such chemical engineering operations and equipment as: Separators to divide a mixture into parts with desirable concentrations Reactors to produce chemicals with needed properties Pressure changers to create favorable equilibrium and rate conditions Temperature changers and heat exchangers to regulate and change the temperature of process streams Throughout the book, the author sets forth examples that refer to a detailed simulation of a process for the manufacture of acrylic acid that provides a unifying thread for equipment sizing in context. The manufacture of hexyl glucoside provides a thread for process design and synthesis. Presenting basic thermodynamics, Principles of Chemical Engineering Practice enables students in chemical engineering and related disciplines to master and apply the fundamentals and to proceed to more advanced studies in chemical engineering.
Mass transfer operations are of great importance in a process industry as it has a direct impact on the cost of the final product. A chemical/process engineer therefore should have sound knowledge of the basics of mass transfer and its applications. This book is designed to equip the reader with sufficient knowledge of mass transfer operations and face the challenges ahead. The objective of this textbook is to teach a budding chemical engineer the principles involved in analyzing a process and apply the desired mass transfer operation to separate the components involved. It deals with operations involving diffusion, interphase mass transfer, humidification, drying, crystallization, absorption, distillation, extraction, leaching and adsorption. The principles and equipment used for different mass transfer operations have been lucidly explained. Designed for a two-semester course, this text is primarily intended for the undergraduate students of chemical, pharmaceutical, petrochemical engineering as well as biotechnology and industrial biotechnology. It will also be useful to plant engineers and design professionals. KEY FEATURES : 1. Explains the theoretical concepts with full derivation of equations. 2. Illustrates the application of theory through worked-out numerical examples. 3. Provides exercise problems with answers at the end of each chapter for practice.