Download Free Mass Transfer In A Continuous Flow Mixing Vessel Book in PDF and EPUB Free Download. You can read online Mass Transfer In A Continuous Flow Mixing Vessel and write the review.

In this investigation, the transfer of mass between liquid phases was studied in a continuous-flow mixing vessel. These data were used to test the applicability of contemporary film theory and to determine the validity of suggested methods of correlation.
This book introduces a number of selected advanced topics in mass transfer phenomenon and covers its theoretical, numerical, modeling and experimental aspects. The 26 chapters of this book are divided into five parts. The first is devoted to the study of some problems of mass transfer in microchannels, turbulence, waves and plasma, while chapters regarding mass transfer with hydro-, magnetohydro- and electro- dynamics are collected in the second part. The third part deals with mass transfer in food, such as rice, cheese, fruits and vegetables, and the fourth focuses on mass transfer in some large-scale applications such as geomorphologic studies. The last part introduces several issues of combined heat and mass transfer phenomena. The book can be considered as a rich reference for researchers and engineers working in the field of mass transfer and its related topics.
Advances in Chemical Engineering
Details simple design methods for multiphase reactors in the chemical process industries Includes basic aspects of transport in multiphase reactors and the importance of relatively reliable and simple procedures for predicting mass transfer parameters Details of design and scale up aspects of several important types of multiphase reactors Examples illustrated through design methodologies presenting different reactors for reactions that are industrially important Includes simple spreadsheet packages rather than complex algorithms / programs or computational aid
Mixing: Theory and Practice, Volume II provides a complete and practical summary of mixing or the movement of fluids in conduits and vessels of laboratory and industrial processing equipment. The book is a compilation of papers that focuses on the theory and practice of mixing. Chapters in this volume are devoted to the discussion of mass transfer in two-phase systems; the effects of mixing on chemical reactions; the mixing of highly viscous materials; the suspension of particles in liquids; the mixing of dry solid particles; and the mechanical design of impeller-type mixers. Chemical engineers and chemists will find the book a good reference material.
This book introduces the fundamental principles of the mass transfer phenomenon and its diverse applications in process industry. It covers the full spectrum of techniques for chemical separations and extraction. Beginning with molecular diffusion in gases, liquids and solids within a single phase, the mechanism of inter-phase mass transfer is explained with the help of several theories. The separation operations are explained comprehensively in two distinct ways—stage-wise contact and continuous differential contact. The primary design requirements of gas–liquid equipment are discussed. The book provides a detailed discussion on all individual gas–liquid, liquid–liquid, solid–gas, and solid–liquid separation processes. The students are also exposed to the underlying principles of the membrane-based separation processes. The book is replete with real applications of separation processes and equipment. Problems are worked out in each chapter. Besides, problems with answers, short questions, multiple choice questions with answers are given at the end of each chapter. The text is intended for a course on mass transfer, transport and separation processes prescribed for the undergraduate and postgraduate students of chemical engineering.
A problem-solving approach that helps students master new material and put their knowledge into practice The Second Edition of the acclaimed Principles and Modern Applications of Mass Transfer Operations continues to provide a thorough, accessible text that gives students the support and the tools they need to quickly move from theory to application. This latest edition has been thoroughly revised and updated with new discussions of such developing topics as membrane separations, ion exchange, multistage batch distillation, and chromatography and other adsorptive processes. Moreover, the Second Edition now covers mass transfer phenomena in biological systems, making the text appropriate for students in biochemical engineering as well as chemical engineering. Complementing the author's clear discussions are several features that help students quickly master new material and put their knowledge into practice, including: Twenty-five to thirty problems at the end of each chapter that enable students to use their newfound knowledge to solve problems Examples and problems that help students become proficient working with Mathcad Figures and diagrams that illustrate and clarify complex concepts and processes References facilitating further in-depth research into particular topics Ten appendices filled with helpful data and reference materials Ideal for a first course in mass transfer operations, this text has proven to be invaluable to students in chemical and environmental engineering as well as researchers and university faculty.
Mixing: Theory and Practice, Volume III is a five-chapter text that covers the significant improvements in the theoretical aspects and knowledge in mixing related to industrial-scale operations. The introductory chapters deal with the agitation of particulate solid-liquid mixtures and the turbulent radial mixing in pipes, with particular emphasis on the effects of jets and baffles on such mixing. The following chapter presents the theoretical analysis and experimental confirmation for predicting hydrodynamic characteristics and some process results in mechanically agitated vessels. Another chapter provides a comprehensive development of approaches and recommended practices for scale-up of agitated liquid equipment. The methods considered serve as a useful guide for reducing the risk of scale-up and scale-down catastrophes. The last chapter discusses the fundamental concepts and measures of the quality of mixing and the mechanisms of mixing and segregation. This chapter also introduces the process of continuous mixing of solids.