Download Free Mass Transfer Driven Evaporation From Capillary Porous Media Book in PDF and EPUB Free Download. You can read online Mass Transfer Driven Evaporation From Capillary Porous Media and write the review.

Mass Transfer–Driven Evaporation from Capillary Porous Media offers a comprehensive review of mass transfer–driven drying processes in capillary porous media, including pore-scale and macro-scale experiments and models. It covers kinetics of drying of a single pore, pore-scale experiments and models, macro-scale experiments and models, and understanding of the continuum model from pore-scale studies. The book: Explains the detailed transport processes in porous media during drying. Introduces cutting-edge visualization experiments of drying in porous media. Describes the pore network models of drying in porous media. Discusses the continuum models of drying in porous media based on pore-scale studies. Points out future research opportunities. Aimed at researchers, students and practicing engineers, this work provides vital fundamental and applied information to those working in drying technology, food processes, applied energy, and mechanical and chemical engineering.
Mass Transfer–Driven Evaporation from Capillary Porous Media offers a comprehensive review of mass transfer–driven drying processes in capillary porous media, including pore-scale and macro-scale experiments and models. It covers kinetics of drying of a single pore, pore-scale experiments and models, macro-scale experiments and models, and understanding of the continuum model from pore-scale studies. The book: Explains the detailed transport processes in porous media during drying. Introduces cutting-edge visualization experiments of drying in porous media. Describes the pore network models of drying in porous media. Discusses the continuum models of drying in porous media based on pore-scale studies. Points out future research opportunities. Aimed at researchers, students and practicing engineers, this work provides vital fundamental and applied information to those working in drying technology, food processes, applied energy, and mechanical and chemical engineering.
Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.
Superheated steam drying (SSD) has long been recognized for several major advantages it offers over other convective dryers, including high energy efficiency by utilization of energy in the exhaust steam, higher product quality due to the absence of oxygen, and avoidance of fire and explosion hazards. Offering a global critical overview of the current state of art, Superheated Steam Drying: Technology for Improved Sustainability and Quality assesses future needs and opportunities for industry adoption and further innovation in SSD. It covers SSD technologies for various industrial sectors and mathematical modeling approaches to help with design and scale-up. The effects of SSD on drying kinetics as well as product quality are also discussed with examples. This book serves as a useful reference for technicians, graduate students, and researchers in the field of drying technology. It can also be used in courses on industrial drying, processing and drying of food, advanced drying technology, and superheated steam drying.
Dehydration of fruits is a massive operation amounting to tens of billions of dollars’ worth in the global market. The enormous variety of fruits grown around the world and the wide range of products made therefrom make this an attractive method for the development of novel and shelf-stable consumer products. Dried Fruit Products offers a current approach linking the theory and practice of fruit drying, summarizing various techniques, their advantages and limitations, industrial applications, and simple design methods. Such dried fruit products as fruit pieces, fruit leathers, and fruit powders are dealt with in a way to inform their physical, chemical, sensory, and nutritional features, along with the characteristics of the process used to obtain them, such as drying method and drying equipment. Key Features: Contains up-to-date information on fruit drying Presents a multi-perspective viewpoint of fruit drying Addresses both food science and chemical engineering aspects of fruit drying Readers can gain knowledge on the various types of drying techniques and insightful thoughts on selecting the appropriate drying techniques for different fruit products.
Drying and Valorisation of Food Processing Waste is a comprehensive guide that delves into the crucial role of advanced drying technologies in mitigating the issue of food waste. This book evaluates the current research, technologies, and methodologies in food waste processing and valorisation, highlighting the challenges and opportunities that exist in this field. This book provides a systematic classification of various types of food waste and how to choose the most appropriate drying technology based on waste characteristics. It also covers the effects of drying technologies on physical and chemical properties, as well as valuable compounds. In addition, it evaluates the impact of drying on different valorisation routes and provides real-life industrial case studies to illustrate the practical applications of the concepts discussed. It is an invaluable resource for professionals, researchers, and academics who are looking to gain a deeper understanding of the impact of drying on food waste reduction and valorisation. This book is aimed at chemical, food, and environmental engineers as well as researchers and academics in these fields. It provides a comprehensive overview of the latest developments in food waste processing and valorisation and is an essential reference for professionals seeking to advance their knowledge in this field. Additionally, this book's practical approach and case studies make it an ideal resource for students and researchers who are looking to gain hands-on experience in food waste reduction and valorisation.
Drying is a key operation in processing of many plant-based foods and medicines for the purpose of preservation and retention of key attributes and active compounds. Therefore, it is essential to select suitable drying techniques to ensure a product is processed under optimal operating conditions. Drying of Herbs, Spices, and Medicinal Plants presents processing aspects of these three major global agricultural commodities. It offers an insight into the drying and product quality of herbs, spices, and medicinal plants, such as drying characteristics, equipment selection, physiochemical analyses, quality improvement, product development, storage, and shelf life as well as future developments. Offers the latest information on drying and processing technologies, research, and development Summarizes various drying techniques, their advantages and limitations, industrial applications, and simple design methods Presents guidelines for dryer selection Links theory and practice Envisages future trends and demands Featuring chapters from expert authors in both industry and academia, this book is an important resource for those working in the chemical, food processing, pharma, and biotech industries, especially those focused on the drying of plants for food and medicinal applications.
In the process industry, understanding the unit operation of particulate drying is imperative to yield products with desired properties and characteristics and to ensure process safety, optimal energy efficiency and drying performance, as well as low environmental impact. There are many techniques and tools available, which can cause confusion. Particulate Drying: Techniques and Industry Applications provides an overview of various particulate drying techniques, their advantages and limitations, industrial applications, and simple design methods. This book: • Covers advances in particulate drying and their importance in the process industry • Highlights recent developments in conventional drying techniques and new drying technologies • Helps readers gain insight into selecting the appropriate drying techniques for a particular product • Summarizes various applications from a wide range of industries, including chemical, food, pharmaceutical, biotech, polymer, mineral, and agro-industries • Projects future research trends and demands in particulate drying This book serves as a reference for process and plant engineers as well as researchers in the fields of particulate processing, mineral processing, food processing, chemical engineering, and mechanical engineering, especially those involved in the selection of drying equipment for particulate solids and R&D of drying of particulate materials.
A comprehensive presentation of wicking models developed in academia and industry, Wicking in Porous Materials: Traditional and Modern Modeling Approaches contains some of the most important approaches and methods available, from the traditional Washburn-type models to the latest Lattice-Boltzmann approaches developed during the last few years. It provides a sound conceptual framework for learning the science behind different mathematical models while at the same time being aware of the practical issues of model validation as well as measurement of important properties and parameters associated with various models. Top experts in the field reveal the secrets of their wicking models. The chapters cover the following topics: Wetting and wettability Darcy’s law for single- and multi-phase flows Traditional capillary models, such as the Washburn-equation based approaches Unsaturated-flow based methodologies (Richard’s Equation) Sharp-front (plug-flow) type approaches using Darcy’s law Pore network models for wicking after including various micro-scale fluid-flow phenomena Studying the effect of evaporation on wicking using pore network models Fractal-based methods Modeling methods based on mixture theory Lattice-Boltzmann method for modeling wicking in small scales Modeling wicking in swelling and non-rigid porous media This extensive look at the modeling of porous media compares various methods and treats traditional topics as well as modern technologies. It emphasizes experimental validation of modeling approaches as well as experimental determination of model parameters. Matching models to particular media, the book provides guidance on what models to use and how to use them.