Download Free Management Of Radioactive Wastes From Nuclear Power Plants Book in PDF and EPUB Free Download. You can read online Management Of Radioactive Wastes From Nuclear Power Plants and write the review.

Provides detailed information on the handling, processing and storage techniques most widely used and recommended for waste from non-fuel-cycle activities. The report was designed to meet the needs of developing countries by focusing on the most simple, affordable and reliable techniques and discussing their advantages and limitations.
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.
The safe management of radioactive wastes is of paramount importance in gaining both governmental and societal support for nuclear energy. The scope of this new textbook is to provide a comprehensive perspective on all types of radioactive wastes as to how they are created, classified, characterized, and disposed.Written to emphasize how geology and radionuclide chemistry impact waste management, this book is primarily designed for engineers who have little background in geology with low-level wastes, decommissioning wastes, high-level wastes and spent nuclear fuel.This textbook provides the most up-to-date information available on waste management in several countries. The content of this work includes transporting radioactive materials to disposal facilities. The textbook cites numerous case studies to illustrate past practices, current methodologies and to provide insights on how radioactive wastes may be managed in the future. An international perspective on waste management is also provided to help the readers better understand the diversity in approaches while highlighting what many countries have in common. Review questions for classroom use are provided at the end of each chapter.Related Link(s)
Advanced separations technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing techniques not only allow for recycling of useful fuel components for further power generation, but by also separating out the actinides, lanthanides and other fission products produced by the nuclear reaction, the residual radioactive waste can be minimised. Indeed, the future of the industry relies on the advancement of separation and transmutation technology to ensure environmental protection, criticality-safety and non-proliferation (i.e., security) of radioactive materials by reducing their long-term radiological hazard.Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment provides a comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment. Part one covers the fundamental chemistry, engineering and safety of radioactive materials separations processes in the nuclear fuel cycle, including coverage of advanced aqueous separations engineering, as well as on-line monitoring for process control and safeguards technology. Part two critically reviews the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment. The section includes discussions of advanced PUREX processes, the UREX+ concept, fission product separations, and combined systems for simultaneous radionuclide extraction. Part three details emerging and innovative treatment techniques, initially reviewing pyrochemical processes and engineering, highly selective compounds for solvent extraction, and developments in partitioning and transmutation processes that aim to close the nuclear fuel cycle. The book concludes with other advanced techniques such as solid phase extraction, supercritical fluid and ionic liquid extraction, and biological treatment processes.With its distinguished international team of contributors, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment is a standard reference for all nuclear waste management and nuclear safety professionals, radiochemists, academics and researchers in this field. - A comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment - Details emerging and innovative treatment techniques, reviewing pyrochemical processes and engineering, as well as highly selective compounds for solvent extraction - Discusses the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment
Waste management at the back end of the nuclear fuel cycle comprises the various activities involved in the handling of the spent fuel once it has left the reactor. The purpose of the minimization of radioactive waste is threefold: (a) to reduce the risks of radiation exposure of technical personnel as well as of the public; (b) to reduce contamination of the environment; and (c) to reduce overall costs by reducing the repository space required for final waste disposal. Waste minimization has become a major part of waste management policies.
Drawing on the authors' extensive experience in the processing and disposal of waste, An Introduction to Nuclear Waste Immobilisation, Second Edition examines the gamut of nuclear waste issues from the natural level of radionuclides in the environment to geological disposal of waste-forms and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices such as bitumen. The final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of the resources needed to understand and correctly immobilize nuclear waste.
Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.
This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered.