Download Free Maglev And Linear Drives Book in PDF and EPUB Free Download. You can read online Maglev And Linear Drives and write the review.

Based on author Ion Boldea’s 40 years of experience and the latest research, Linear Electric Machines, Drives, and Maglevs Handbook provides a practical and comprehensive resource on the steady improvement in this field. The book presents in-depth reviews of basic concepts and detailed explorations of complex subjects, including classifications and practical topologies, with sample results based on an up-to-date survey of the field. Packed with case studies, this state-of-the-art handbook covers topics such as modeling, steady state, and transients as well as control, design, and testing of linear machines and drives. It includes discussion of types and applications—from small compressors for refrigerators to MAGLEV transportation—of linear electric machines. Additional topics include low and high speed linear induction or synchronous motors, with and without PMs, with progressive or oscillatory linear motion, from topologies through modeling, design, dynamics, and control. With a breadth and depth of coverage not found in currently available references, this book includes formulas and methods that make it an authoritative and comprehensive resource for use in R&D and testing of innovative solutions to new industrial challenges in linear electric motion/energy automatic control.
This book provides a comprehensive overview of magnetic levitation (Maglev) technologies, from fundamental principles through to the state-of-the-art, and describes applications both realised and under development. It includes a history of Maglev science and technology showing the various milestones in its advancement. The core concepts, operating principles and main challenges of Maglev applications attempted across various fields are introduced and discussed. The principle difficulties encountered when applying Maglev technology to different systems, namely air gap control and stabilization, are addressed in detail. The book describes how major advancements in linear motor and magnet technologies have enabled the development of the linear-motor-powered Maglev train, which has a high speed advantage over conventional wheeled trains and has the potential to reach speed levels achieved by aircraft. However, many expect that Maglev technology to be a green technology that is applied not only in rail transportation, but also in diverse other fields; to ensure clean transfer in LCD manufacturing, in ropeless high speed elevators, small capacity rail transportation, space vehicle launchers, missile testers, energy storage, and so on. These potential applications and their unique challenges and proposed technological solutions are introduced and discussed in depth. The book will provide readers from academia, research institutes and industry with insights on where and how to apply Maglev technology, and will serve as a guide to the realization of their Maglev applications.
Considered to be the first book devoted to the subject, Linear Synchronous Motors: Transportation and Automation Systems, Second Edition evaluates the state of the art, demonstrating the technological innovations that are improving the design, construction, and performance of modern control systems. This new edition not only illustrates the development of linear synchronous motor drives, but it also discusses useful techniques for selecting a motor that will meet the specific requirements of linear electrical drives. New Features for the Second Edition: Several updated and expanded sections, as well as two new chapters on FEM Even more numerical examples, calculations, and mathematical models Broadened target audience that includes researchers, scientists, students, and more Evaluating trends and practical techniques for achieving optimal system performance, the authors showcase ready-to-implement solutions for common roadblocks in this process. The book presents fundamental equations and calculations used to determine and evaluate system operation, efficiency, and reliability, with an exploration of modern computer-aided design of linear synchronous motors, including the finite element approach. It covers topics such as linear sensors and stepping motors, magnetic levitation systems, elevators, and factory automation systems. It also features case studies on flat PM, tubular PM, air-cored, and hybrid linear synchronous motors, as well as 3D finite element method analysis of tubular linear reluctance motors, and linear oscillatory actuators. With such an exceptional presentation of practical tools and conceptual illustrations, this volume is an especially powerful resource. It will benefit readers from all walks by providing numerical examples, models, guidelines, and diagrams to help develop a clear understanding of linear synchronous motor operations, characteristics, and much more.
Considered to be the first book devoted to the subject, Linear Synchronous Motors: Transportation and Automation Systems, Second Edition evaluates the state of the art, demonstrating the technological innovations that are improving the design, construction, and performance of modern control systems. This new edition not only illustrates the development of linear synchronous motor drives, but it also discusses useful techniques for selecting a motor that will meet the specific requirements of linear electrical drives. New Features for the Second Edition: Several updated and expanded sections, as well as two new chapters on FEM Even more numerical examples, calculations, and mathematical models Broadened target audience that includes researchers, scientists, students, and more Evaluating trends and practical techniques for achieving optimal system performance, the authors showcase ready-to-implement solutions for common roadblocks in this process. The book presents fundamental equations and calculations used to determine and evaluate system operation, efficiency, and reliability, with an exploration of modern computer-aided design of linear synchronous motors, including the finite element approach. It covers topics such as linear sensors and stepping motors, magnetic levitation systems, elevators, and factory automation systems. It also features case studies on flat PM, tubular PM, air-cored, and hybrid linear synchronous motors, as well as 3D finite element method analysis of tubular linear reluctance motors, and linear oscillatory actuators. With such an exceptional presentation of practical tools and conceptual illustrations, this volume is an especially powerful resource. It will benefit readers from all walks by providing numerical examples, models, guidelines, and diagrams to help develop a clear understanding of linear synchronous motor operations, characteristics, and much more.
Linear motion is richly present in various industries, from direct electric propulsion in urban and interurban people movers on wheels or on magnetic “cushions” (MAGLEVs) to indoor transport of goods (conveyors, etc.), through plunger solenoids (to open hotel doors and as electromagnetic power switches), to compressor drives by linear oscillatory permanent magnet (PM) motors, smart phones integrated microphone and loudspeakers, and controlled vehicles’ suspension, etc. Besides the traditional rotary motor drives with mechanical transmissions, which mean friction limitations (weather dependent) in traction (heavy vehicles), more losses, positioning errors (backlash) in the process, and higher maintenance costs to handle them, linear motion in industry by direct electromagnetic forces is free of friction limitations for traction, free of mechanical transmission, and thus more efficient, with less maintenance cost and fewer positioning errors (backlash). This explains why they are used in so many applications already since the dramatic advancement of power electronics and digital control in the last four decades. Modeling, performance, design, control, and testing of linear electric machines (LEMs) show notable differences with respect to rotary electric motor drives, which warrant a dedicated treatment of these aspects. The Second Edition (First Edition: 2013) concentrates on the above technical aspects of various types of LEMs in close relationship with specific applications via numerical examples of modeling, design, control, and testing, with ample representative results from literature, industry and some of the author’s contributions, such as: Technical field and circuit modeling of linear induction motors in flat configurations for low and high speeds (with and without dynamic end effects) and in tubular configurations short travel design, control and testing Linear synchronous motor (LSM) drives in dc-excited, homopolar, reluctance and superconducting excitation configurations for urban and interurban high-speed vehicles propulsion and integrated propulsion and levitation (in MAGLEVs) modeling, design and control with full-scale numerical examples, with emphasis on lower KWh/passenger/Km at high speeds Flat and tubular linear permanent magnet (PM) synchronous motors (L-PMSMs), mainly destined to industrial indoor transport for automation at high efficiency in clean rooms Linear “flux-modulation” motors— new breed, suitable for very low-speed applications due to higher thrust density Plunger solenoids in various applications including new valve PM actuators with millisecond response time Linear resonant PM oscillatory motors design, control and testing mainly destined to compressors for higher efficiency in compact drives Attraction and repulsive force suspension (levitation) systems for MAGLEVs Active and passive guideway MAGLEVs in urban and superhigh-speed interurban transport at lower Kwh per passenger/km (in lighter vehicles without wheels) The numerous numerical design and control examples (with practical specifications) throughout the 23 chapters of the book allow the reader deep and fast access to a practical but thorough unitary (good for comparisons) methodology in designing and controlling LEMs for various applications.
The motion of the train depends on the traction of linear motors in the vehicle. This book describes a number of essential technologies that can ensure the safe operation of Maglev trains, such as suspension and orientation technologies, network control and diagnosis technologies. This book is intended for researchers, scientists, engineers and graduate students involved in the rail transit industry, train control and diagnosis, and Maglev technology.
This comprehensive review of linear induction drives provides an in-depth examination of their design, construction, and practical applications. Both state-of-the-art computer aided design methods and practical estimation methods for main dimensions and performance calculations are presented so that engineers can generate accurate designs as well as test their preliminary ideas. Practical problems discussed include those relating to variable-speed linear drives, power conditioning, and control methods. Testing techniques are also outlined. The book is addressed particularly to electrical engineers involved in the design and construction of linear induction drives. It will also be of value to mechanical engineers and students of electrical machine engineering.
Power Electronics and Motor Drives: Advances and Trends, Second Edition is the perfect resource to keep the electrical engineer up-to-speed on the latest advancements in technologies, equipment and applications. Carefully structured to include both traditional topics for entry-level and more advanced applications for the experienced engineer, this reference sheds light on the rapidly growing field of power electronic operations. New content covers converters, machine models and new control methods such as fuzzy logic and neural network control. This reference will help engineers further understand recent technologies and gain practical understanding with its inclusion of many industrial applications. Further supported by a glossary per chapter, this book gives engineers and researchers a critical reference to learn from real-world examples and make future decisions on power electronic technology and applications. - Provides many practical examples of industrial applications - Updates on the newest electronic topics with content added on fuzzy logic and neural networks - Presents information from an expert with decades of research and industrial experience
Selected, peer reviewed papers from the 9th International Symposium on Linear Drives for Industry Applications (LDIA 2013), July 7-10, 2013, Hangzhou, China