Download Free Macromolecular Structures And Function Book in PDF and EPUB Free Download. You can read online Macromolecular Structures And Function and write the review.

This book follows on from Volume 83 in the SCBI series (“Macromolecular Protein Complexes”), and addresses several important topics (such as the Proteasome, Anaphase Promoting Complex, Ribosome and Apoptosome) that were not previously included, together with a number of additional exciting topics in this rapidly expanding field of study. Although the first SCBI Protein Complex book focused on soluble protein complexes, the second (Vol. 87)addressed Membrane Complexes, and the third (Vol. 88) put the spotlight on Viral Protein and Nucleoprotein Complexes, a number of membrane, virus and even fibrillar protein complexes have been be considered for inclusion in the present book. A further book is also under preparation that follows the same pattern, in an attempt to provide a thorough coverage of the subject. Chapter 9 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Fundamentals of Molecular Structural Biology reviews the mathematical and physical foundations of molecular structural biology. Based on these fundamental concepts, it then describes molecular structure and explains basic genetic mechanisms. Given the increasingly interdisciplinary nature of research, early career researchers and those shifting into an adjacent field often require a "fundamentals" book to get them up-to-speed on the foundations of a particular field. This book fills that niche.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Biology has entered an era in which interdisciplinary cooperation is at an all-time high, practical applications follow basic discoveries more quickly than ever before, and new technologiesâ€"recombinant DNA, scanning tunneling microscopes, and moreâ€"are revolutionizing the way science is conducted. The potential for scientific breakthroughs with significant implications for society has never been greater. Opportunities in Biology reports on the state of the new biology, taking a detailed look at the disciplines of biology; examining the advances made in medicine, agriculture, and other fields; and pointing out promising research opportunities. Authored by an expert panel representing a variety of viewpoints, this volume also offers recommendations on how to meet the infrastructure needsâ€"for funding, effective information systems, and other supportâ€"of future biology research. Exploring what has been accomplished and what is on the horizon, Opportunities in Biology is an indispensable resource for students, teachers, and researchers in all subdisciplines of biology as well as for research administrators and those in funding agencies.
This volume is a collection of the contributions presented at the 42nd Erice Crystallographic Course whose main objective was to train the younger generation on advanced methods and techniques for examining structural and dynamic aspects of biological macromolecules. The papers review the techniques used to study protein assemblies and their dynamics, including X-ray diffraction and scattering, electron cryo-electron microscopy, electro nanospray mass spectrometry, NMR, protein docking and molecular dynamics. A key theme throughout the book is the dependence of modern structural science on multiple experimental and computational techniques, and it is the development of these techniques and their integration that will take us forward in the future.
In much of biology, the search for understanding the relation between structure and function is now taking place at the macromolecular level. Proteins, nucleic acids, and polysaccharides are macromolecule--polymers formed from families of simpler subunits. Because of their size and complexity, the polymers are capable of both inter- and intramolecular interactions. These interactions confer upon the polymers distinctive three-dimensional shapes. These tertiary configurations, in turn, determine the function of the macromolecule. Computers have become so inextricably involved in empirical studies of three-dimensional macromolecular structure that mathematical modeling, or theory, and experimental approaches are interrelated aspects of a single enterprise.
Molecular biology and genetics are fast-growing fields with significant results and findings being reported virtually every day. Raw data from the wet lab accumulate at an astonishing rate, making it necessary to analyze the biological data with the use of computers. This book reveals how the current challenges of molecular biology and genetics are met with computer and mathematical treatments. A combined effort of the Computational Genetics and Biophysics Group (Supercomputer Computations Research Institute, USA), the Theoretical Molecular Genetics (Russian Academy of Sciences, Russia) and the Bioinformatics Group (Consiglio Nazionale delle Ricerche, Italy), many of these findings are firsthand discoveries made by these groups. The book emphasizes the fundamental principles of the structural-functional organization of the 3 major classes of genetic macromolecules: DNA, RNA and proteins. It also introduces universally applicable theoretical principles into the enormous realm of raw data and develops an integrative, theoretical computer approach to the analysis of these macromolecules to gain insights into the complexities of their function and evolution.
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Biological Macromolecules: Bioactivity and Biomedical Applications presents a comprehensive study of biomacromolecules and their potential use in various biomedical applications. Consisting of four sections, the book begins with an overview of the key sources, properties and functions of biomacromolecules, covering the foundational knowledge required for study on the topic. It then progresses to a discussion of the various bioactive components of biomacromolecules. Individual chapters explore a range of potential bioactivities, considering the use of biomacromolecules as nutraceuticals, antioxidants, antimicrobials, anticancer agents, and antidiabetics, among others. The third section of the book focuses on specific applications of biomacromolecules, ranging from drug delivery and wound management to tissue engineering and enzyme immobilization. This focus on the various practical uses of biological macromolecules provide an interdisciplinary assessment of their function in practice. The final section explores the key challenges and future perspectives on biological macromolecules in biomedicine. - Covers a variety of different biomacromolecules, including carbohydrates, lipids, proteins, and nucleic acids in plants, fungi, animals, and microbiological resources - Discusses a range of applicable areas where biomacromolecules play a significant role, such as drug delivery, wound management, and regenerative medicine - Includes a detailed overview of biomacromolecule bioactivity and properties - Features chapters on research challenges, evolving applications, and future perspectives