Download Free Macromolecular Structures 1991 Book in PDF and EPUB Free Download. You can read online Macromolecular Structures 1991 and write the review.

This book of the proceedings of the 1997 NATO Advanced Study Institute (ASI) on Direct Methods for Solving Macromolecular Structures was assembled from the lecturers' contributions and represents a comprehensive and in-depth overview of crystallographic structure determination methods for macromolecules. While having a focus based on the direct methods, the Institute adopted an inclusive and broad perspective. Thus, both direct and experimental phasing techniques are presented in this book, highlighting their complementarities and synergies. As weil, methodologies spanning the full crystallographic image reconstruction process - from low resolution envelope definition to high resolution atomic refinement- are discussed. The first part of the book introduces the array of tools currently used in structure determination, whether originating from a mathematical, computational or experimental framework. This section of the book displays the variety and ingenuity of old and new phasing approaches developed to solve increasingly complex structures. Some of the contributions focus on recent developments and/or implementations that have given older approaches a new life. A case in point is the re-implementation of Buerger's superposition approach, which is now solving protein structures. Another beautiful example is found in the introduction to the traditional multiple isomorphous replacement approach where new techniques, such as site-directed mutagenesis and the use of inert gases in the preparation of heavy atom derivatives, are described. Equally impressive are the presentations of newer approaches, which take advantage of advances on the experimental front (e. g.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This book provides a comprehensive coverage of the basic principles of structural biology, as well as an up-to-date summary of some main directions of research in the field. The relationship between structure and function is described in detail for soluble proteins, membrane proteins, membranes, and nucleic acids.There are several books covering protein structure and function, but none that give a complete picture, including nucleic acids, lipids, membranes and carbohydrates, all being of central importance in structural biology.The book covers state-of-the-art research in various areas. It is unique for its breadth of coverage by experts in the fields. The book is richly illustrated with more than 400 color figures to highlight the wide range of structures.
This volume contains 20 papers from two courses ("Methods for Macromolecular Crystallography" and "Chemical Prospective in Crystallography of Molecular Biology") held during the late spring of 2000 in Reice, Italy. The papers discuss crystals, synchrotrons, detector development, data processing, ab initio phasing and high and low resolution, molecular placement, experimental phase measurement, density modification methods, map improvements, interpretation of electron density maps, automatic structure determination, and the dissection of ultra-high resolution structures. c. Book News Inc.
Molecular biology and genetics are fast-growing fields with significant results and findings being reported virtually every day. Raw data from the wet lab accumulate at an astonishing rate, making it necessary to analyze the biological data with the use of computers. This book reveals how the current challenges of molecular biology and genetics are met with computer and mathematical treatments. A combined effort of the Computational Genetics and Biophysics Group (Supercomputer Computations Research Institute, USA), the Theoretical Molecular Genetics (Russian Academy of Sciences, Russia) and the Bioinformatics Group (Consiglio Nazionale delle Ricerche, Italy), many of these findings are firsthand discoveries made by these groups. The book emphasizes the fundamental principles of the structural-functional organization of the 3 major classes of genetic macromolecules: DNA, RNA and proteins. It also introduces universally applicable theoretical principles into the enormous realm of raw data and develops an integrative, theoretical computer approach to the analysis of these macromolecules to gain insights into the complexities of their function and evolution.
From within complex structures of organisms and cells down to the molecular level, biological processes all involve movement. Muscular fibers slide on each other to activate the muscle, as polymerases do along nucleic acids for replicating and transcribing the genetic material. Cells move and organize themselves into organs by recognizing each other through macromolecular surface-specific interactions. These recognition processes involve the mu tual adaptation of structures that rely on their flexibility. All sorts of conformational changes occur in proteins involved in through-membrane signal transmission, showing another aspect of the flexibility of these macromolecules. The movement and flexibility are inscribed in the polymeric nature of essential biological macromolecules such as proteins and nucleic acids. For instance, the well-defined structures formed by the long protein chain are held together by weak noncovalent interac tions that design a complex potential well in which the protein floats, permanently fluctuating between several micro- or macroconformations in a wide range of frequencies and ampli tudes. The inherent mobility of biomolecular edifices may be crucial to the adaptation of their structures to particular functions. Progress in methods for investigating macromolecular structures and dynamics make this hypothesis not only attractive but more and more testable.