Download Free Machining Dynamics And Parameters Process Optimization Book in PDF and EPUB Free Download. You can read online Machining Dynamics And Parameters Process Optimization and write the review.

As we move further into the 21st century, despite the fact that new technologies have emerged, machining remains the key operation to achieve high productivity and precision for high-added value parts in several sectors, but recent advances in computer applications should close the gap between simulations and industrial practices. This book, “Machining Dynamics and Parameters Process Optimization”, is oriented toward the different strategies and paths when it comes to increasing productivity and reliability in metal removal processes. The topics include the dynamic characterization of machine tools, experimental dampening techniques, and optimization algorithms combined with signal monitoring.
Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.
This book brings together papers presented at the 2020 International Conference on Communications, Signal Processing, and Systems, which provides a venue to disseminate the latest developments and to discuss the interactions and links between these multidisciplinary fields. Spanning topics ranging from communications, signal processing and systems, this book is aimed at undergraduate and graduate students in Electrical Engineering, Computer Science and Mathematics, researchers and engineers from academia and industry as well as government employees (such as NSF, DOD and DOE).
This book covers recent trends and applications of nonlinear dynamics in various branches of society, science, and engineering. The selected peer-reviewed contributions were presented at the International Conference on Nonlinear Dynamics and Applications (ICNDA 2022) at Sikkim Manipal Institute of Technology (SMIT) and cover a broad swath of topics ranging from chaos theory and fractals to quantum systems and the dynamics of the COVID-19 pandemic. Organized by the SMIT Department of Mathematics, this international conference offers an interdisciplinary stage for scientists, researchers, and inventors to present and discuss the latest innovations and trends in all possible areas of nonlinear dynamics.
The first part of this volume provides the user with assistance in the selection and design of important machine and frame components. It also provides help with machine design, calculation and optimization of these components in terms of their static, dynamic and thermoelastic behavior. This includes machine installation, hydraulic systems, transmissions, as well as industrial design and guidelines for machine design. The second part of this volume deals with the metrological investigation and assessment of the entire machine tool or its components with respect to the properties discussed in the first part of this volume. Following an overview of the basic principles of measurement and measuring devices, the procedure for measuring them is described. Acceptance of the machine using test workpieces and the interaction between the machine and the machining process are discussed in detail. The German Machine Tools and Manufacturing Systems Compendium has been completely revised. The previous five-volume series has been condensed into three volumes in the new ninth edition with color technical illustrations throughout. This first English edition is a translation of the German ninth edition.
This book discusses the basic theoretical model and implementation method of intelligent machining technology and promotes the application of intelligent machining technology in the manufacturing of complex aviation components, such as aero-engine blisk, casing parts and blades. It not only presents the fundamental theory of intelligent machining, but also provides detailed examples of applications in the aviation industry.The topics covered include intelligent programming, intelligent processing models, process monitoring, machining process control, intelligent fixtures and applications in aviation components machining.This book is intended for researchers, engineers and postgraduate students in fields of manufacturing, mechatronics, mechanical engineering and related areas.
To fully exploit the advantages of multi-axis machining in a modern production environment, new types of parallel kinematic machines (PKM) and new processing technologies such as those using high speed cutting (HSC) are needed. However, the machining accuracy and hence the process reliability of PKM are still not satisfactory when using today's CAM systems due to the complexity of the dynamic behavior of machine axes. A hybrid simulation method for optimizing tool paths that overcomes the limits of today's CAM systems is presented in this work. Two major independent simulations were performed, to examine the influences on the quality of the final product. It is shown that the kinematics, the dynamics and the stiffness are important factors affecting the accuracy of PKM. These factors can be taken into account, to obtain an accurate modeling of PKM-behavior.
Selected, peer reviewed papers from the 2014 International Mechanical Engineering Congress (IMEC 2014), June 13-15, 2014, Tamil Nadu, India
Advanced Modeling and Optimization of Manufacturing Processes presents a comprehensive review of the latest international research and development trends in the modeling and optimization of manufacturing processes, with a focus on machining. It uses examples of various manufacturing processes to demonstrate advanced modeling and optimization techniques. Both basic and advanced concepts are presented for various manufacturing processes, mathematical models, traditional and non-traditional optimization techniques, and real case studies. The results of the application of the proposed methods are also covered and the book highlights the most useful modeling and optimization strategies for achieving best process performance. In addition to covering the advanced modeling, optimization and environmental aspects of machining processes, Advanced Modeling and Optimization of Manufacturing Processes also covers the latest technological advances, including rapid prototyping and tooling, micromachining, and nano-finishing. Advanced Modeling and Optimization of Manufacturing Processes is written for designers and manufacturing engineers who are responsible for the technical aspects of product realization, as it presents new models and optimization techniques to make their work easier, more efficient, and more effective. It is also a useful text for practitioners, researchers, and advanced students in mechanical, industrial, and manufacturing engineering.