Download Free Machine Learning In Geomechanics 1 Book in PDF and EPUB Free Download. You can read online Machine Learning In Geomechanics 1 and write the review.

Machine learning has led to incredible achievements in many different fields of science and technology. These varied methods of machine learning all offer powerful new tools to scientists and engineers and open new paths in geomechanics. The two volumes of Machine Learning in Geomechanics aim to demystify machine learning. They present the main methods and provide examples of its applications in mechanics and geomechanics. Most of the chapters provide a pedagogical introduction to the most important methods of machine learning and uncover the fundamental notions underlying them. Building from the simplest to the most sophisticated methods of machine learning, the books give several hands-on examples of coding to assist readers in understanding both the methods and their potential and identifying possible pitfalls.
Machine learning has led to incredible achievements in many different fields of science and technology. These varied methods of machine learning all offer powerful new tools to scientists and engineers and open new paths in geomechanics. The two volumes of Machine Learning in Geomechanics aim to demystify machine learning. They present the main methods and provide examples of its applications in mechanics and geomechanics. Most of the chapters provide a pedagogical introduction to the most important methods of machine learning and uncover the fundamental notions underlying them. Building from the simplest to the most sophisticated methods of machine learning, the books give several hands-on examples of coding to assist readers in understanding both the methods and their potential and identifying possible pitfalls.
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG), held in Turin, Italy on August 30 - September 2, 2022. Contributions include a wide range of topics in geomechanics such as: laboratory and field testing, constitutive modelling, monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, natural slopes, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures and computational rail geotechnics.
Soft computing techniques are no longer limited to the arena of computer science. The discipline has an exponentially growing demand in other branches of science and engineering and even into health and social science. This book contains theory and applications of soft computing in engineering, health, and social and applied sciences. Different soft computing techniques such as artificial neural networks, fuzzy systems, evolutionary algorithms and hybrid systems are discussed. It also contains important chapters in machine learning and clustering. This book presents a survey of the existing knowledge and also the current state of art development through original new contributions from the researchers. This book may be used as a one-stop reference book for a broad range of readers worldwide interested in soft computing. In each chapter, the preliminaries have been presented first and then the advanced discussion takes place. Learners and researchers from a wide variety of backgrounds will find several useful tools and techniques to develop their soft computing skills. This book is meant for graduate students, faculty and researchers willing to expand their knowledge in any branch of soft computing. The readers of this book will require minimum prerequisites of undergraduate studies in computation and mathematics.
Understanding the mechanical behavior of solids and contacts (interfaces and joints) is vital for the analysis, design, and maintenance of engineering systems. Materials may simultaneously experience the effects of many factors such as elastic, plastic, and creep strains; different loading (stress) paths; volume change under shear stress; and microcracking leading to fracture and failure, strain softening, or degradation. Typically, the available models account for only one factor at a time; however, the disturbed state concept (DSC) with the hierarchical single-surface (HISS) plasticity is a unified modeling approach that can allow for numerous factors simultaneously, and in an integrated manner. DSC/HISS Modeling Applications for Problems in Mechanics, Geomechanics, and Structural Mechanics provides readers with comprehensive information including the basic concepts and applications for the DSC/HISS modeling regarding a wide range of engineering materials and contacts. Uniformity in format and content of each chapter will make it easier for the reader to appreciate the potential of using the DSC/HISS modeling across various applications. Features: • Presents a new and simplified way to learn characterizations and behaviors of materials and contacts under various conditions • Offers modeling applicable to several different materials including geologic (clays, sands, rocks), modified geologic materials (structured soils, overconsolidated soils, expansive soils, loess, frozen soils, chemically treated soils), hydrate-bearing sediments, and more.
This book presents recent research into developing and applying computational tools to estimate the performance and safety of hydraulic structures from the planning and construction stage to the service period. Based on the results of a close collaboration between the author and his colleagues, friends, students and field engineers, it shows how to achieve a good correlation between numerical computation and the actual in situ behavior of hydraulic structures. The book’s heuristic and visualized style disseminates the philosophy and road map as well as the findings of the research. The chapters reflect the various aspects of the three typical and practical methods (the finite element method, the block element method, the composite element method) that the author has been working on and made essential contributions to since the 1980s. This book is an advanced continuation of Hydraulic Structures by the same author, published by Springer in 2015.
Geotechnical Aspects of Underground Construction in Soft Ground comprises a collection of 112 papers, the Fujita Lecture, three Special Lectures and the Bright Spark Lecture presented at the Tenth International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, held in Cambridge, United Kingdom, 27-29 June 2022. This second edition includes four general reports on the symposium themes. The symposium is the latest in a series which began in New Delhi in 1994, and was followed by symposia in London (1996), Tokyo (1999), Toulouse (2002), Amsterdam (2005), Shanghai (2008), Rome (2011), Seoul (2014) and Sao Paulo (2017). This was organised by the Geotechnical Research Group at the University of Cambridge, under the auspices of the Technical Committee TC204 of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). Geotechnical Aspects of Underground Construction in Soft Ground includes contributions from more than 25 countries on research, design and construction of underground works in soft ground. The contributions cover: Field case studies Sensing technologies and monitoring for underground construction in soft ground Physical and numerical modelling of tunnels and deep excavations in soft ground Seismic response of underground infrastructure in soft ground Design and application of ground improvement for underground construction Ground movements, interaction with existing structures and mitigation measures The general reports give an overview of the papers submitted to the symposium, covered in four technical sessions. The proceedings include the written version of the five invited lectures covering topics ranging from developments in geotechnical aspects of underground construction, tunnelling and groundwater interaction (short and long-term effects), the influence of earth pressure balance shield tunnelling on pre-convergence and segmental liner loading (field observations, modelling and implications on design). Similar to previous editions, Geotechnical Aspects of Underground Construction in Soft Ground represents a valuable source of reference on the current practice of analysis, design, and construction of tunnels and deep excavations in soft ground. The book is particularly aimed at academics and professionals interested in geotechnical and underground engineering.
GEOTECHNICAL ASPECTS OF UNDERGROUND CONSTRUCTION IN SOFT GROUND comprises a collection of 112 contributions presented at the Tenth International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, held in Cambridge, United Kingdom, 27-29th June 2022. This 2nd edition also includes four general reports on the symposium themes which give an overview of the papers submitted to the symposium, covered in four technical sessions. The symposium is the latest in a series which began in New Delhi in 1994, and was followed by symposia in London (1996), Tokyo (1999), Toulouse (2002), Amsterdam (2005), Shanghai (2008), Rome (2011), Seoul (2014) and Sao Paulo (2017). This symposium was organised by the Geotechnical Research Group at the University of Cambridge, under the auspices of the Technical Committee TC204 of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). Geotechnical Aspects of Underground Construction in Soft Ground includes contributions from more than 25 countries on the research, design and construction of underground works in soft ground. The contributions cover the following themes: Field case studies Sensing technologies and monitoring for underground construction in soft ground Physical and numerical modelling of tunnels and deep excavations in soft ground Seismic response of underground infrastructure in soft ground Design and application of ground improvement for underground construction Ground movements, interaction with existing structures and mitigation measures Similar to previous editions, GEOTECHNICAL ASPECTS OF UNDERGROUND CONSTRUCTION IN SOFT GROUND represents a valuable source of reference on the current practice of analysis, design, and construction of tunnels and deep excavations in soft ground. The book is particularly aimed at academics and professionals interested in geotechnical and underground engineering.