Download Free Machine Learning For Vision Based Motion Analysis Book in PDF and EPUB Free Download. You can read online Machine Learning For Vision Based Motion Analysis and write the review.

Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.
"This book highlights the development of robust and effective vision-based motion understanding systems, addressing specific vision applications such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval"--Provided by publisher.
This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.
Human action analyses and recognition are challenging problems due to large variations in human motion and appearance, camera viewpoint and environment settings. The field of action and activity representation and recognition is relatively old, yet not well-understood by the students and research community. Some important but common motion recognition problems are even now unsolved properly by the computer vision community. However, in the last decade, a number of good approaches are proposed and evaluated subsequently by many researchers. Among those methods, some methods get significant attention from many researchers in the computer vision field due to their better robustness and performance. This book will cover gap of information and materials on comprehensive outlook – through various strategies from the scratch to the state-of-the-art on computer vision regarding action recognition approaches. This book will target the students and researchers who have knowledge on image processing at a basic level and would like to explore more on this area and do research. The step by step methodologies will encourage one to move forward for a comprehensive knowledge on computer vision for recognizing various human actions.
With the recent and enormous increase in the amount of available data sets of all kinds, applying effective and efficient techniques for analyzing and extracting information from that data has become a crucial task. Intelligent Data Analysis for Real-Life Applications: Theory and Practice investigates the application of Intelligent Data Analysis (IDA) to these data sets through the design and development of algorithms and techniques to extract knowledge from databases. This pivotal reference explores practical applications of IDA, and it is essential for academic and research libraries as well as students, researchers, and educators in data analysis, application development, and database management.
Computational Vision and Medical Image Processing. VIPIMAGE 2013 contains invited lectures and full papers presented at VIPIMAGE 2013 - IV ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing (Funchal, Madeira Island, Portugal, 14-16 October 2013). International contributions from 16 countries provide a comprehensive coverage of the current state-of-the-art in the fields of: 3D Vision; Computational Bioimaging and Visualization; Computational Vision and Image Processing applied to Dental Medicine; Computational Vision; Computer Aided Diagnosis, Surgery, Therapy, and Treatment; Data Interpolation, Registration, Acquisition and Compression; Image Processing and Analysis; Image Segmentation; Imaging of Biological Flows; Medical Imaging; Physics of Medical Imaging; Shape Reconstruction; Signal Processing; Simulation and Modeling; Software Development for Image Processing and Analysis; Telemedicine Systems and their Applications; Trabecular Bone Characterization; Tracking and Analysis of Movement; Virtual Reality. Related techniques covered in this book include the level set method, finite element method, modal analyses, stochastic methods, principal and independent components analysis and distribution models. Computational Vision and Medical Image Processing. VIPIMAGE 2013 is useful to academics, researchers and professionals in Biomechanics, Biomedical Engineering, Computational Vision (image processing and analysis), Computer Sciences, Computational Mechanics and Medicine.
This book constitutes the proceedings of the Second International Workshop on Similarity Based Pattern Analysis and Recognition, SIMBAD 2013, which was held in York, UK, in July 2013. The 18 papers presented were carefully reviewed and selected from 33 submissions. They cover a wide range of problems and perspectives, from supervised to unsupervised learning, from generative to discriminative models, from theoretical issues to real-world practical applications, and offer a timely picture of the state of the art in the field.
An image or video sequence is a series of two-dimensional (2-D) images sequen tially ordered in time. Image sequences can be acquired, for instance, by video, motion picture, X-ray, or acoustic cameras, or they can be synthetically gen erated by sequentially ordering 2-D still images as in computer graphics and animation. The use of image sequences in areas such as entertainment, visual communications, multimedia, education, medicine, surveillance, remote control, and scientific research is constantly growing as the use of television and video systems are becoming more and more common. The boosted interest in digital video for both consumer and professional products, along with the availability of fast processors and memory at reasonable costs, has been a major driving force behind this growth. Before we elaborate on the two major terms that appear in the title of this book, namely motion analysis and image sequence processing, we like to place them in their proper contexts within the range of possible operations that involve image sequences. In this book, we choose to classify these operations into three major categories, namely (i) image sequence processing, (ii) image sequence analysis, and (iii) visualization. The interrelationship among these three categories is pictorially described in Figure 1 below in the form of an "image sequence triangle".
This book constitutes the refereed proceedings of the 4th International Conference on Social Robotics, ICSR 2012, held in Chengdu, China, in October 2012. The 66 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on affective and cognitive sciences for socially interactive robots, situated interaction and embodiment, robots to assist the elderly and persons with disabilities, social acceptance of robots and their impact to the society, artificial empathy, HRI through non-verbal communication and control, social telepresence robots, embodiments and networks, interaction and collaboration among robots, humans and environment, human augmentation, rehabilitation, and medical robots I and II.