Download Free Lyotropic Chromonic Liquid Crystals Book in PDF and EPUB Free Download. You can read online Lyotropic Chromonic Liquid Crystals and write the review.

This thesis describes lyotropic chromonic liquid crystals (LCLCs) with exotic elastic and viscous properties. The first part of the thesis presents a thorough analysis of the elastic and viscous properties of LCLCs as functions of concentration, temperature and ionic contents, while the second part explores an active nematic system: living liquid crystals, which represent a combination of LCLC and living bacteria. LCLCs are an emerging class of liquid crystals that have shown profound connections to biological systems in two aspects. First, the assembly process of the chromonic aggregates is essentially the same as DNA oligomers and other super-molecular assemblies of biological origin. LCLCs thus provide an excellent model system for studying physical properties such as the elasticity and viscosity of these supramolecular assemblies. Second, LCLCs are biocompatible, thus serving as a unique anisotropic matrix to interface with living systems such as bacteria. This thesis deepens our understanding of both aspects. The noncovalent nature of chromonic aggregation produces the unique viscoelasticity to be found in LCLCs, which differs dramatically from that of traditional LCs. Anisotropic interactions between LCLCs and bacteria lead to fascinating phenomena such as the deformation of LCLCs with a characteristic wavelength determined by the elasticity of the LCLCs and the activity of the bacteria, orientationally controlled trajectories of bacteria and visualization of 24 nm flagella motion.
This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.
This book on liquid crystals reports on the new perspectives that have been brought about by the recent expansion of frontiers and overhaul of common beliefs. First, it explores the interaction of light with mesophases, when the light or matter is endowed with topological defects. It goes on to show how electrophoresis, electro-osmosis and the swimming of flagellated bacteria are affected by the anisotropic properties of liquid crystals. It also reports on the recent progress in the understanding of thermomechanical and thermohydrodynamical effects in cholesterics and deformed nematics and refutes the common belief that these effects could explain Lehmann’s observations of the rotation of cholesteric droplets subjected to a temperature gradient. It then studies the physics of the dowser texture, which has remarkable properties. This is of particular interest in regards to nematic monopoles, which can easily be generated, set into motion and collided within it. Finally, this book deals with the spontaneous emergence of chirality in nematics made of achiral molecules, and provides a brief historical context of chirality
This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which deals with elastic deformation of nematic liquid crystals due to inclusions and surface alignment. This is discussed in the context of basic mean field Landau-de Gennes Q-tensor theory, with a brief explanation of the free-energy minimization numerical methods. There then follows an excursion into the topology of complex nematic colloidal structures, colloidal entanglement, knotting and linking. Nematic droplets, shells, handlebodies and chiral topological structures are addressed in separate chapters. The book concludes with an extensive chapter on the photonic properties of nematic dispersions, presenting the concept of integrated soft matter photonics and discussing the concepts of nematic and chiral nematic microlasers, surface-sensitive photonic devices and smectic microfibers. The text is complemented by a large bibliography, explanatory sketches and beautiful micrographs.
Liquid crystals (LCs) were discovered more than a century ago, and were, for a long time, treated as a physical curiosity, until the development of flat panel screens and display devices caused a revolution in the information display industry, and in fact in society. There would be no mobile phones without liquid crystals, no flat screen TVs or computer monitors, no virtual reality, just to name a few of the applications that have changed our whole world of vision and perception. All of these inventions are based on liquid crystals that are formed through a change in temperature, thermotropic LCs. However, there is another form of liquid crystals, described even earlier, yet much less talked about; the lyotropic liquid crystals that occur through the change of concentration of some molecules in a solvent. These are found in abundance in nature, making up the cell membranes, and are used extensively in the food, detergents and cosmetics industries. In this collection of articles by experts in their respective research areas, we bring together some of the most recent and innovative aspects of lyotropic liquid crystals, which we believe will drive future research and set novel trends in this field.
This book focuses on mixed crystals formed by molecular substances. The emphasis lies on the elucidation of the structural and thermodynamic properties of two-component systems. Thanks to the fact that the research efforts have been directed to a number of families of chemically coherent substances, rather than to a collection of isolated systems, the knowledge of mixed crystals has substantially increased. This is reflected by the discovery of several empirical relationships between thermodynamic properties, crystallographic properties, and also between thermodynamic mixing properties and exothermodynamic parameters, such as the structural mismatch between the components of the binary systems. This book is a benchmark for material scientists and a unique starting point for anyone interested in mixed crystals.
The collection is divided into sections, each of which is prefaced by a brief commentary referring to the historic-scientific context of the time.
Research on metal-containing liquid crystals is a rapidly expanding, multidisciplinary field with new materials continually being synthesized and novel applications being developed. 'Metallomesogens' is the first comprehensive survey of the field, introducing the reader to: * materials design * synthesis * physical properties * emerging applications Carefully selected references round off this well-organized compendium. It is an indispensable guide to experienced researchers in coordination and organometallic chemistry as well as in liquid-crystal and materials science. Newcomers and graduate students will also benefit from this didactically sound introduction to the field.
This volume deals with substances in the liquid state that range from high melting salts, such as calcium fluoride, through slags, such as silicates, down to lower melting salts, such as lithium nitrate, molten hydrated salts, such as magnesium chloride hexahydrate, to room temperature ionic liquids, such as 1,3-dimethylimmidazolium tetraphenylborate. It provides the reader with annotated, critically examined, and compiled data for such materials. The data includes a variety of thermochemical, structural, and transport properties. The book includes correlations of measured properties; these correlations should enable the reader to estimate, on a sound basis, properties for ionic liquids that have not yet been measured.
This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.