Download Free Lyapunovs Direct Method In The Analysis Of Singular Systems And Networks Book in PDF and EPUB Free Download. You can read online Lyapunovs Direct Method In The Analysis Of Singular Systems And Networks and write the review.

Computer control systems are developing rapidly, therefore an insight of the latest trends in the design of control systems will increase the success of future developments. This publication brings together the latest key papers on research and development trends in this field, allowing both academics and industrial practioners to find new insights and gain from each other's experience.
The ASI on Nonlinear Model Based Process Control (August 10-20, 1997~ Antalya - Turkey) convened as a continuation of a previous ASI which was held in August 1994 in Antalya on Methods of Model Based Process Control in a more general context. In 1994, the contributions and discussions convincingly showed that industrial process control would increasingly rely on nonlinear model based control systems. Therefore, the idea for organizing this ASI was motivated by the success of the first one, the enthusiasm expressed by the scientific community for continuing contact, and the growing incentive for on-line control algorithms for nonlinear processes. This is due to tighter constraints and constantly changing performance objectives that now force the processes to be operated over a wider range of conditions compared to the past, and the fact that many of industrial operations are nonlinear in nature. The ASI intended to review in depth and in a global way the state-of-the-art in nonlinear model based control. The list of lecturers consisted of 12 eminent scientists leading the principal developments in the area, as well as industrial specialists experienced in the application of these techniques. Selected out of a large number of applications, there was a high quality, active audience composed of 59 students from 20 countries. Including family members accompanying the participants, the group formed a large body of92 persons. Out of the 71 participants, 11 were from industry.
The feedback control of nonlinear differential and algebraic equation systems (DAEs) is a relatively new subject. Developing steadily over the last few years, it has generated growing interest inspired by its engineering applications and by advances in the feedback control of nonlinear ordinary differential equations (ODEs). This book-the first of its kind-introduces the reader to the inherent characteristics of nonlinear DAE systems and the methods used to address their control, then discusses the significance of DAE systems to the modeling and control of chemical processes. Within a unified framework, Control of Nonlinear Differential Algebraic Equation Systems presents recent results on the stabilization, output tracking, and disturbance elimination for a large class of nonlinear DAE systems. Written at a basic mathematical level-assuming some familiarity with analysis and control of nonlinear ODEs-the authors focus on continuous-time systems of differential and algebraic equations in semi-explicit form. Beginning with background material about DAE systems and their differences from ODE systems, the book discusses generic classes of chemical processes, feedback control of regular and non-regular DAE systems, control of systems with disturbance inputs, the connection of the DAE systems considered with singularly perturbed systems, and finally offers examples that illustrate the application of control methods and the advantages of using high-index DAE models as the basis for controller design. Mathematicians and engineers will find that this book provides unique, timely results that also clearly documents the relevance of DAE systems to chemical processes.
The increasingly competitive environment within which modern industry has to work means that processes have to be operated over a wider range of conditions in order to meet constantly changing performance targets. Add to this the fact that many industrial operations are nonlinear, and the need for on-line control algorithms for nonlinear processes becomes clear. Major progress has been booked in constrained model-based control and important issues of nonlinear process control have been solved. This text surveys the state-of-the-art in nonlinear model-based control technology, by writers who have actually created the scientific profile. A broad range of issues are covered in depth, from traditional nonlinear approaches to nonlinear model predictive control, from nonlinear process identification and state estimation to control-integrated design. Advances in the control of inverse response and unstable processes are presented. Comparisons with linear control are given, and case studies are used for illustration.
Learn how to implement BCU methods for fast direct stability assessments of electric power systems Electric power providers around the world rely on stability analysis programs to help ensure uninterrupted service to their customers. These programs are typically based on step-by-step numerical integrations of power system stability models to simulate system dynamic behaviors. Unfortunately, this offline practice is inadequate to deal with current operating environments. For years, direct methods have held the promise of providing real-time stability assessments; however, these methods have presented several challenges and limitations. This book addresses these challenges and limitations with the BCU methods developed by author Hsiao-Dong Chiang. To date, BCU methods have been adopted by twelve major utility companies in Asia and North America. In addition, BCU methods are the only direct methods adopted by the Electric Power Research Institute in its latest version of DIRECT 4.0. Everything you need to take full advantage of BCU methods is provided, including: Theoretical foundations of direct methods Theoretical foundations of energy functions BCU methods and their theoretical foundations Group-based BCU method and its applications Numerical studies on industrial models and data Armed with a solid foundation in the underlying theory of direct methods, energy functions, and BCU methods, you'll discover how to efficiently solve complex practical problems in stability analysis. Most chapters begin with an introduction and end with concluding remarks, making it easy for you to implement these tested and proven methods that will help you avoid costly and dangerous power outages.
This monograph is sums up the development of singular system theory and provides the control circle with a systematic theory of the system. It focuses on the analysis and synthesis of singular control systems. Its distinctive features include systematic discussion of controllabilities and observabilities, design of singular or normal observers and compensators with their structural stability, systems analysis via transfer matrix, and studies of discrete-time singular systems. Some acquaintance with linear algebra and linear systems is assumed. Prospective readers are graduate students, scientists, and other researchers in control theory and its applications. Much of the material in the book is new.