Download Free Luminescent Materials And Their Applications Book in PDF and EPUB Free Download. You can read online Luminescent Materials And Their Applications and write the review.

Luminescence, for example, as fluorescence, bioluminescence, and phosphorescence, can result from chemical changes, electrical energy, subatomic motions, reactions in crystals, or stimulation of an atomic system. This subject continues to have a major technological role for humankind in the form of applications such as organic and inorganic light emitters for flat panel and flexible displays such as plasma displays, LCD displays, and OLED displays. Luminescent Materials and Applications describes a wide range of materials and applications that are of current interest including organic light emitting materials and devices, inorganic light emitting diode materials and devices, down-conversion materials, nanomaterials, and powder and thin-film electroluminescent phosphor materials and devices. In addition, both the physics and the materials aspects of the field of solid-state luminescence are presented. Thus, the book may be used as a reference to gain an understanding of various types and mechanisms of luminescence and of the implementation of luminescence into practical devices. The book is aimed at postgraduate students (physicists, electrical engineers, chemical engineers, materials scientists, and engineers) and researchers in industry, for example, at lighting and display companies and academia involved in studying conduction in solids and electronic materials. It will also provide an excellent starting point for all scientists interested in luminescent materials. Finally it is hoped that this book will not only educate, but also stimulate further progress in this rapidly evolving field.
Everyone starting work in this field is faced with the lack of basic books. Here, two renowned researchers introduce the reader to luminescence and its applications, describing the principles of the luminescence processes in a clear way and dealing not only with physics, but also with the chemistry of systems. Particular attention is paid to materials such as lamp phosphors, cathode-ray and X-ray phosphors, scintillators and many other applications.
In this, the only up-to-date book on this key technology, the number-one expert in the field perfectly blends academic knowledge and industrial applications. Adopting a didactical approach, Professor Ronda discusses all the underlying principles, such that both researchers as well as beginners in the field will profit from this book. The focus is on the inorganic side and the phenomena of luminescence behind the manifold applications illustrated here, including displays, LEDs, lamps, and medical applications. Valuable reading for chemists and electrochemists, as well as materials scientists, those working in the optical and chemical industry, plus lamp and lighting manufacturers.
In recent decades, luminescent nanomaterials have generated great interest in the scientific community due to their unique properties, which are different from those of their bulk counterparts, and their use in a wide variety of applications. Today, luminescent nanomaterials are used in a number of applications such as displays, solid-state lighting, solar cells, long afterglow, dosimetry, theft prevention, medical imaging, phototherapy, and quantum and gas sensing. This book presents cutting-edge research from experts in the field of synthesis and characterization of luminescent nanomaterials and their potential applications. It covers interesting topics in semiconductor physics, photochemistry, physical chemistry, materials science, and luminescence, and will be useful for beginners and advanced researchers interested in this field.
Drawn from the second edition of the best-selling Phosphor Handbook, Practical Applications of Phosphors outlines methods for the production of various phosphors and discusses a broad spectrum of applications. Beginning with methods for synthesis and related technologies, the book sets the stage by classifying and then explaining practical phosphors according to usage. It describes the operating principle and structure of phosphor devices and the phosphor characteristics required for a given device, then covers the manufacturing processes and characteristics of phosphors. The book discusses research and development currently under way on phosphors with potential for practical usage and touches briefly on phosphors that have played a historical role, but are no longer of practical use. It provides a comprehensive treatment of applications including lamps and cathode-ray tubes, x-ray and ionizing radiation, and for vacuum fluorescent and field emission displays and covers inorganic and organic electroluminescence materials. The book also covers phosphors for plasma displays, organic fluorescent pigments, and phosphors used in a variety of other practical applications. Emphasizing the practical and cutting-edge nature of the material included, the editors round out their coverage with a discussion of solid-state and organic laser materials.
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on ‘Fundamentals of Luminescence’ elucidates the theoretical background and fundamental properties of luminescence as applied to solid-state phosphor materials. The book includes the chapters that cover: Basic principles of luminescence, the principal phosphor materials, and their optical properties New developments in principal phosphors in nitrides, perovskite, and silicon carbide Revised lanthanide level locations and its impact on phosphor performance Detailed descriptions of energy transfer and upconversion processes in bulk and nanoscaled particles and core-shell structures Rapid developing organic and polymer luminescent materials and devices
Luminescence - OLED Technology and Applications is a collection of reviewed and relevant research chapters offering a comprehensive overview of recent developments in the field of organic light-emitting diode (OLED) materials and devices. The book comprises chapters authored by various researchers and is edited by an expert in the field. It provides a thorough overview of the latest technologies and applications in this field and opens new possible research paths for further novel developments.
Rare earth–doped luminescent materials play an integral role in modern life because of their tremendous applications ranging from scintillators, color displays, fluorescent lamps, and intensifying screens to dosimetry of ionizing radiations. Written and edited by prominent luminescence researchers, this book details cutting-edge research on luminescence materials and is illustrated throughout with excellent figures and references. It will appeal to anyone involved in luminescence research and its applications, especially advanced undergraduate-, graduate-, and postgraduate-level students of spectroscopy, solid state physics, luminescence, material synthesis, and optical properties and researchers working on the synthesis of optical materials, the characterization of luminescence materials, solid state lighting, radiation dosimetry luminescence, and phosphor applications.
The aim of this book is to give readers a broad review of topical worldwide advancements in theoretical and experimental facts, instrumentation and practical applications erudite by luminescent materials and their prospects in dealing with different types of luminescence like photoluminescence, electroluminescence, thermo-luminescence, triboluminescence, bioluminescence design and applications. The additional part of this book deals with the dynamics, rare-earth ions, photon down-/up-converting materials, luminescence dating, lifetime, bioluminescence microscopical perspectives and prospects towards the basic research or for more advanced applications. This book is divided into four main sections: luminescent materials and their associated phenomena; photo-physical properties and their emerging applications; thermoluminescence dating: from theory to applications, and bioluminescence perspectives and prospects. Individual chapters should serve the broad spectrum of common readers of diverse expertise, layman, students and researchers, who may in this book find easily elucidated fundamentals as well as progressive principles of specific subjects associated with these phenomena. This book was created by 14 contributions from experts in different fields of luminescence and technology from over 20 research institutes worldwide.
Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to stud